Patents by Inventor Manzur Gill

Manzur Gill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5120571
    Abstract: A contact-free floating-gate non-volatile memory cell array and process with silicided NSAG bitlines and with source/drain regions buried beneath relatively thick silicon oxide. The bitlines have a relatively small resistance, eliminating the need for parallel metallic conductors with numerous bitline contacts. The array has relatively small bitline capacitance and may be constructed having relatively small dimensions. Isolation between wordlines and between bitlines is by thick field oxide regions. A thick field oxide strip separates each ground conductor/bitline pair. Wordlines may be formed from silicided polycrystalline or other material with low resistivity. Coupling of programming and erasing voltages to the floating gate is improved by extending the gates over the thick field oxide and perhaps by using an insulator with relatively high dielectric constant between the control gate and the floating gate. The four sides of the floating gates are defined with a single patterning step.
    Type: Grant
    Filed: January 7, 1991
    Date of Patent: June 9, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Howard L. Tigelaar
  • Patent number: 5110753
    Abstract: A contact-free floating-gate non-volatile memory cell array and process with silicided NSAG bitlines and with source/drain regions buried beneath relatively thick silicon oxide. The bitlines have a relatively small resistance, eliminating the need for parallel metallic conductors with numerous bitline contacts. The array has relatively small bitline capacitance and may be constructed having relatively small dimensions. Isolation between wordlines and between bitlines is by thick field oxide. Wordlines may be formed from silicided polycrystalline or other material with low resistivity. Coupling of programming and erasing voltages to the floating gate is improved by extending the gates over the thick field oxide and perhaps by using an insulator with relatively high dielectric constant between the control gate and the floating gate. The resulting structure is a dense cross-point array of progammable memory cells.
    Type: Grant
    Filed: September 4, 1990
    Date of Patent: May 5, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, David J. McElroy
  • Patent number: 5103273
    Abstract: A nonvolatile memory cell having separate regions for programming and erasing. The cells are formed in an array at a face of a semiconductor body, each cell including a source that is part of a source-column line and including a drain that is part of a drain-column line. Each cell has first, second and third sub-channels between source and drain. The conductivity of the first sub-channel of each cell is controlled by a field-plate, which is part of a field-plate-column line, positioned over and insulated from the first sub-channel. The conductivity of each of the second sub-channels is controlled by a floating gate formed over and insulated from the second sub-channel. Each floating gate has a first tunnelling window positioned over the adjacent source-column line and has a second tunnelling window positioned over the adjacent drain-column line. Row lines, including control gates, are positioned over and insulated from the floating gates of the cells for reading, programming and erasing the cells.
    Type: Grant
    Filed: September 28, 1990
    Date of Patent: April 7, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Theodore D. Lindgren
  • Patent number: 5100819
    Abstract: First and second EEPROM cells have first and second source regions (28a, 28b) formed in a semiconductor layer (12) to be of a second conductivity type opposite the first conductivity type of the layer and to be spaced apart from each other. A field plate conductor (100) is insulatively disposed adjacent, and defines, an inversion region (102), and further is laterally spaced between the first and second source regions (28a, 28b). The inversion region (102) is inverted from the first conductivity type to the second conductivity type upon application of a predetermined voltage to the field plate conductor (100). First and second channel regions (48a, 48b) are defined between the respective source regions (28a28b) and the inversion region (102) and each include floating gate and control gate subchannel regions (60a, 62a, 62b, 60b). First and second floating gate conductors (40a, 40b) are insulatively disposed adjacent respective floating gate subchannel regions (60a , 60b) to control their conductance.
    Type: Grant
    Filed: November 27, 1990
    Date of Patent: March 31, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo
  • Patent number: 5095345
    Abstract: A contact-free floating-gate non-volatile memory cell array and process with silicided NSAG bitlines and with source/drain regions buried beneath relatively thick silicon oxide. The bitlines have a relatively small resistance, eliminating the need for parallel metallic conductors with numerous bitline contacts. The array has relatively small bitline capacitance and may be constructed having relatively small dimensions. Isolation between wordlines and between bitlines is by thick field oxide regions. A thick field oxide strip separates each ground conductor/bitline pair. Wordlines may be formed from silicided polycrystalline or other material with low resistivity. Coupling of programming and erasing voltages to the floating gate is improved by extending the gates over the thick field oxide and perhaps by using an insulator with relatively high dielectric constant between the control gate and the floating gate. The resulting structure is a dense cross-point array of programmable memory cells.
    Type: Grant
    Filed: August 30, 1990
    Date of Patent: March 10, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Howard L. Tigelaar
  • Patent number: 5081055
    Abstract: An electrically-erasable, programmable ROM cell, or an EEPROM cell, is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small tunnel window, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. The bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ration of control gate to floating gate capacitance. Programming and erasure are provided by the tunnel window area, which is located near or above the channel side of the source. The window has a thinner dielectric than the remainder of the floating gate, to allow Fowler-Nordheim tunneling. By using dedicated drain or ground lines, rather than a virtual-ground layout, and by using thick oxide for isolation between bitlines, the floating gate can extend onto adjacent bitlines and isolation area, resulting in a favorable coupling ratio.
    Type: Grant
    Filed: January 31, 1991
    Date of Patent: January 14, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo, Sung-Wei Lin
  • Patent number: 5063171
    Abstract: A diffusionless field effect transistor is formed at a face of a semiconductor layer (12) of a first conductivity type and includes a source conductor (36), a drain conductor (38) and a channel region (44). Source conductor (36) and drain conductor (38) are disposed to create inversion regions, of a second conductivity type opposite said first conductivity type, in the underlying source inversion region (40) and drain inversion region (42) of semiconductor layer (12) upon application of voltage. The transistor has a gate (54) insulatively overlying the channel region (44) to control the conductivity thereof.
    Type: Grant
    Filed: April 6, 1990
    Date of Patent: November 5, 1991
    Assignee: Texas Instruments Incorporated
    Inventor: Manzur Gill
  • Patent number: 5060195
    Abstract: An electrically-erasable, electrically-programmable, read-only memory cell array is formed in pairs at a face of a semiconductor substrate (11). Each memory cell includes a source region (14a) and a shaped drain region (16), with at corresponding channel region (18a) in between. A Fowler-Nordheim tunnel window subregion (15a) of the source region (14a) is located opposite the channel (18a). A floating gate conductor (FG) includes a channel section (32a) and a tunnel window section (34a). The floating gate conductor is formed in two stages, the first stage forming the channel section (32a) from a first-level polysilicon (P1A). This floating gate channel section (32a/P1A) is used as a self-alignment implant mask for the source (14a) and drain (16) regions, such that the channel junction edges are aligned with the coresponding edges of the channel section. A control gate conductor (CG) is disposed over the floating gate conductor (FG), insulated by an intervening interlevel dielectric (ILD).
    Type: Grant
    Filed: October 11, 1990
    Date of Patent: October 22, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sung-Wei Lin
  • Patent number: 5057446
    Abstract: According to the invention, an integrated circuit with improved capacitive coupling is provided, and includes a first conductor (20), a second conductor (16), and a third conductor (22). The second conductor (22) and third conductor (16) are disposed adjacent each other, separated by an insulator region (60). The first conductor (20) contacts the third conductor (16) and extends across a portion of the third conductor (22). The first and third conductors are separated by an insulator region (54). A voltage applied to first conductor (20) and second conductor (16) is capacitively coupled to third conductor (22).
    Type: Grant
    Filed: August 6, 1990
    Date of Patent: October 15, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, David J. McElroy
  • Patent number: 5051796
    Abstract: A contact-free floating-gate non-volatile memory cell array and process with silicated NSAG bitlines and with source/drain regions buried beneath relatively thick silicon oxide. The bitlines having a relatively small resistance, eliminating the need for parallel metallic conductors with numerous bitline contacts. The array has relatively small bitline capacitance and may be constructed having relatively small dimensions. Bitline isolation is by P/N junction or by oxide-filled trench, permitting relatively small spacing between transistors. Wordlines may be formed from silicided polycrystalline or other material with low resistivity. Coupling of programming and erasing voltages to the floating gate is improved by using an insulator with relatively high dielectric constant between the control gate and the floating gate. The resulting structure is a dense cross-point array of programmable memory cells.
    Type: Grant
    Filed: September 1, 1989
    Date of Patent: September 24, 1991
    Assignee: Texas Instruments Incorporated
    Inventor: Manzur Gill
  • Patent number: 5051795
    Abstract: An electrically-erasable, electrically-programmable ROM or an EEPROM is constructed using a floating-gate transistor with or without a split gate. The floating-gate transistor may have a self-aligned tunnel window of sublithographic dimension positioned on the opposite side of the source from the channel and drain, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. In this cell, the bitlines and source/drain regions are buried beneath relatively thick silicon oxide and the floating gate extends over the thick silicon oxide. Programming and erasing are accomplished by causing electrons to tunnel through the oxide in the tunnel window. The tunnel window has a thinner dielectric than the remainder of the oxides under the floating gate to allow Fowler-Nordheim tunneling. Trenches and ditches are used for electrical isolation between individual memory cells, allowing an increase in cell density.
    Type: Grant
    Filed: November 21, 1989
    Date of Patent: September 24, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo, David J. McElroy
  • Patent number: 5047981
    Abstract: A method for either block- or bit-erasing is described for an array of EEPROM cells, each having transistor channel regions with subchannels thereof respectively controlled by a floating gate conductor and a control gate. Erasing occurs through a Fowler-Nordheim tunnel window (34) between a source bit line (24) and a floating gate conductor (42) of a selected cell. For one or more selected cells, first and second erasing voltages are selected such that the selected source bit line (24) is more positive than the selected word line (48) by a voltage sufficient to cause excess electrons on the floating gate conductor (42) to be drawn through the tunnel window (34) to the source region (24). The nonselected word lines (48) have a nonerasing voltage impressed thereon that is sufficiently close to that of selected source regions that no erase disturb will occur in nonselected cells.
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: September 10, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sung-Wei Lin, Iano D'Arrigo, David McElroy
  • Patent number: 5045491
    Abstract: A nonvolatile memory cell having separate regions for programming and erasing. The cells are formed in an array at a face of a semiconductor body, each cell including a source that is part of a source-column line and including a drain that is part of a drain-column line. Each cell has first and second sub-channels between source and drain. The conductivity of the first sub-channel of each cell is controlled by a field-plate, which is part of a field-plate-column line, positioned over and insulated from the first sub-channel. The conductivity of each of the second sub-channels is controlled by a floating gate formed over and insulated from the second sub-channel. Each floating gate has a first tunnelling window positioned over the adjacent source-column line and has a second tunnelling window positioned over the adjacent drain-column line. Row lines, including control gates, are positioned above and insulated from the floating gates of the cells for reading, programming and erasing the cells.
    Type: Grant
    Filed: September 28, 1990
    Date of Patent: September 3, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Theodore D. Lindgren
  • Patent number: 5045489
    Abstract: A 2-transistor cell (26) comprises buried diffused regions (34, 36 and 38) aligned substantially parallel. Floating gates (40) are aligned substantially perpendicular to the diffused regions (34, 36 and 38). A control gate (42) defines a first channel region between first and second diffused regions (34 and 36) to define a read transistor (30) and a second channel region between second and third diffused regions (36 and 38) to define a program transistor. The read transistor (30) and program transistor (32) may be individually optimized according to their respective functions. Further, tunnel windows (70) may be provided for Fowler-Nordheim tunneling.
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: September 3, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, David D. Wilmoth
  • Patent number: 5032533
    Abstract: An array of nonvolatile memory cells are formed at a face of a semiconductor body, the cells including source regions and including drain regions that are part of a common drain column conductor. Each cell has first and second sub-channel regions between source and drain. The conductivity of the first sub-channel regions of each cell is controlled by a field-plate conductor formed over and insulated from the first sub-channel region. The conductivity of each of the second sub-channel regions is controlled by a floating-gate conductor formed over and insulated from the second sub-channel region. A row line, including control gates, is located above and insulated from the floating gates of the cells for reading, programming and erasing the cells. The field-plate conductor switch provided isolation of the cells during programming.
    Type: Grant
    Filed: December 4, 1989
    Date of Patent: July 16, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo
  • Patent number: 5025494
    Abstract: A contact-free floating-gate non-volatile memory cell array and process with silicided NSAG bitlines and with source/drain regions buried beneath relatively thick silicon oxide. The bitlines have a relatively small resistance, eliminating the need for parallel metallic conductors with numerous bitline contacts. The array has relatively small bitline capacitance and may be constructed having relatively small dimensions. Isolation between wordlines and between bitlines is by thick field oxide. Wordlines may be formed from silicided polycrystalline or other material with low resistivity. Coupling of programming and erasing voltages to the floating gate is improved by extending the gates over the thick field oxide and perhaps by using an insulator with relatively high dielectric constant between the control gate and the floating gate. The resulting structure is a dense cross-point array of programmable memory cells.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: June 18, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, David J. McElroy
  • Patent number: 5023680
    Abstract: A contact-free floating-gate non-volatile memory cell array and process with silicided NSAG bitlines and with source/drain regions buried beneath relatively thick silicon oxide. The bitlines have a relatively small resistance, eliminating the need for parallel metallic conductors with numerous bitline contacts. The array has relatively small bitline capacitance and may be constructed having relatively small dimensions. Isolation between wordlines and between bitlines is by thick field oxide regions. A thick field oxide strip separates each ground conductor/bitline pair. Wordlines may be formed from silicided polycrystalline or other material with low resistivity. Coupling of programming and erasing voltages to the floating gate is improved by extending the gates over the thick field oxide and perhaps by using an insulator with relatively high dielectric constant between the control gate and the floating gate. The four sides of the floating gates are defined with a single patterning step.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: June 11, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Howard L. Tigelaar
  • Patent number: 5017980
    Abstract: An electrically-erasable, programmable ROM cell, or an EEPROM cell, is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small tunnel window, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. The bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasure are provided by the tunnel window area, which is located near or above the channel side of the source. The window has a thinner dielectric than the remainder of the floating gate, to allow Fowler-Nordheim tunneling. By using dedicated drain or ground lines, rather than a virtual-ground layout, and by using thick oxide for isolation between bitlines, the floating gate can extend onto adjacent bitlines and isolation area, resulting in a favorable coupling ratio.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: May 21, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo, Sung-Wei Lin
  • Patent number: 5017515
    Abstract: The process of this invention includes forming and patterning a first layer of photoresist to form first lines of photoresist having substantially minimum lithographic widths, forming first elements between the first lines of photoresist, removing the photoresist, forming a sidewall member on each side edge of the first elements, forming a second layer over the structure, and etching to electrically insulate the first elements and the second elements at the sidewalls. Alternatively, the structure is coated with another layer of photoresist after formation of sidewall member on each side of the first elements. The layer of photoresist is patterned to form second photoresist lines that cover alternating sidewall members. The exposed sidewall members are removed. Strips are formed between the second photoresist lines. After removal of the second photoresist lines, the structure is etched as before. However, in this embodiment, lateral extensions of the first elements are formed.
    Type: Grant
    Filed: October 2, 1989
    Date of Patent: May 21, 1991
    Assignee: Texas Instruments Incorporated
    Inventor: Manzur Gill
  • Patent number: 5012307
    Abstract: An electrically-erasable, programmable ROM cell, or an EEPROM cell, is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small tunnel window, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. The bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasing are provided by the tunnel window are near or above the channel side of the source. The window has a thinner dielectric than the remainder of the floating gate, to allow Fowler-Nordheim tunneling. By using dedicated drain or ground lines, rather than a virtual-ground layout, and by using thick oxide for isolation between bitlines, the floating gate can extend onto adjacent bitlines and isolation area, resulting in a favorable coupling ratio.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: April 30, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo, Sung-Wei Lin