Patents by Inventor Mara G. Prentiss

Mara G. Prentiss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8689981
    Abstract: Systems and methods for the manipulation of particles within channels such as microfluidic channels are provided. In one set of embodiments, magnets are positioned around a channel. As a fluid containing magnetic and non-magnetic particles flows through the channel, the magnetic field created by the magnets can be used to transport the magnetic and/or non-magnetic particles to desired locations within the channel, which may useful in some cases for causing some separation of the particles. For example, the magnetic field may be used to transport magnetic or non-magnetic particles from a core fluid to a surrounding sheath fluid. In some cases, the magnetic field is used to transport non-magnetic particles to a small volume within the channel (e.g., a single-file row within the channel).
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: April 8, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Howard A. Stone, Mara G. Prentiss, Pierre Striehl, Efraim Feinstein
  • Publication number: 20130065783
    Abstract: Provided herein are systems and related methods comprising (i) short stretches (e.g., 9 to 24 bases) of single-stranded nucleic acid (e.g., DNA) capture probes coated with RecA and, in some instances, bound to a solid substrate, and (ii) double-stranded nucleic acid (e.g., DNA or RNA) target(s).
    Type: Application
    Filed: September 10, 2012
    Publication date: March 14, 2013
    Applicant: President and Fellows of Harvard College
    Inventors: Mara G. Prentiss, Efraim Feinstein, Claudia Danilowicz
  • Publication number: 20120080360
    Abstract: Systems and methods for the manipulation of particles within channels such as microfluidic channels are provided. In one set of embodiments, magnets are positioned around a channel. As a fluid containing magnetic and non-magnetic particles flows through the channel, the magnetic field created by the magnets can be used to transport the magnetic and/or non-magnetic particles to desired locations within the channel, which may useful in some cases for causing some separation of the particles. For example, the magnetic field may be used to transport magnetic or non-magnetic particles from a core fluid to a surrounding sheath fluid. In some cases, the magnetic field is used to transport non-magnetic particles to a small volume within the channel (e.g., a single-file row within the channel).
    Type: Application
    Filed: April 8, 2010
    Publication date: April 5, 2012
    Applicant: President and Fellows of Harvard College
    Inventors: Howard A. Stone, Mara G. Prentiss, Pierre Striehl, Efraim Feinstein
  • Patent number: 8012382
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: September 6, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Christian Marzolin, Mara G. Prentiss, George M. Whitesides
  • Patent number: 7875197
    Abstract: Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: January 25, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Younan Xia, James L. Wilbur, Rebecca J. Jackman, Enoch Kim, Mara G. Prentiss, Milan Mrksich, Amit Kumar, Christopher B. Gorman, Hans Biebuyck, Karl K. Berggren
  • Publication number: 20090166903
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Application
    Filed: March 4, 2009
    Publication date: July 2, 2009
    Applicant: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Publication number: 20090097808
    Abstract: The invention relates to methods and apparatuses for guiding and emitting electromagnetic radiation from a fluid waveguide. Various methods for changing optical properties (e.g., refractive index, absorption, and fluorescence) and/or physical properties (e.g., magnetic susceptibility, electrical conductivity, and temperature) of either the waveguide core or the cladding, or both, are provided herein. In one embodiment, electromagnetic radiation is guided and/or emitted at multiple distinct wavelengths, including emission in the form of an essentially continuous band, in some cases covering at least 150 nanometers. In another embodiment, methods for splitting a waveguide core and/or the joining of at least two waveguide cores in a waveguide are provided. In yet another embodiment, the invention includes the use of thermal gradients to generate a waveguide and/or to change the properties of waveguides. Embodiments of the waveguides may be used for optical detection or spectroscopic analysis.
    Type: Application
    Filed: August 1, 2005
    Publication date: April 16, 2009
    Applicant: President and Fellows of Harvard College
    Inventors: Daniel B. Wolfe, Kateri E. Paul, Dmitri V. Vezenov, Brian T. Mayers, Richard S. Conroy, Piotr Garstecki, Michael A. Fischbach, Valentine I. Vullev, Kam Yan Tang, Mara G. Prentiss, George M. Whitesides
  • Publication number: 20090001049
    Abstract: Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding.
    Type: Application
    Filed: August 6, 2008
    Publication date: January 1, 2009
    Applicant: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Younan Xia, James L. Wilbur, Rebecca J. Jackman, Enoch Kim, Mara G. Prentiss, Milan Mrksich, Amit Kumar, Christopher B. Gorman, Hans Biebuyck, Karl K. Berggren
  • Publication number: 20040178523
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Application
    Filed: October 1, 2003
    Publication date: September 16, 2004
    Applicant: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Publication number: 20040159633
    Abstract: Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding.
    Type: Application
    Filed: February 11, 2004
    Publication date: August 19, 2004
    Applicant: President & Fellows of Harvard University
    Inventors: George M. Whitesides, Younan Xia, James L. Wilbur, Rebecca J. Jackman, Enoch Kim, Mara G. Prentiss, Milan Mrksich, Amit Kumar, Christopher B. Gorman, Hans Biebuyck, Karl K. Berggren
  • Patent number: 6752942
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: June 22, 2004
    Assignee: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Patent number: 6660192
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: December 9, 2003
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Publication number: 20020166800
    Abstract: The invention provides systems and methods of manipulating biological or chemical species. The species may be attached to a magnetic particle which is manipulated using micro-magnetic fields. In some cases, the magnetic fields are generated by current carrying wires that are patterned on a substrate. The magnetic fields define channels on the surface of the substrate in which the magnetic particles and attached species may be transported, positioned and stored. Thus, the systems and methods can manipulate biological or chemical species on a microscale (e.g., less than 5 cm). Applications of the systems and methods are in, but are not limited to, the fields of biotechnology, microanalysis, and microsynthesis.
    Type: Application
    Filed: May 11, 2001
    Publication date: November 14, 2002
    Inventors: Mara G. Prentiss, Gary Zabow, Tao Deng, Mala Lakshmi Radhakrishnan, George M. Whitesides
  • Publication number: 20020166760
    Abstract: The invention provides systems and methods of manipulating biological or chemical species. The species may be attached to a magnetic particle which is manipulated using micro-magnetic fields. In some cases, the magnetic fields are generated by current carrying wires that are patterned on a substrate. The magnetic fields define channels on the surface of the substrate in which the magnetic particles and attached species may be transported, positioned and stored. In other cases, the magnetic fields are generated by magnetic features located within the channels on the surface of the substrate. Thus, the systems and methods can manipulate biological or chemical species on a microscale (e.g., less than 5 cm). Applications of the systems and methods are in, but are not limited to, the fields of biotechnology, microanalysis, and microsynthesis.
    Type: Application
    Filed: November 30, 2001
    Publication date: November 14, 2002
    Inventors: Mara G. Prentiss, Gary Zabow, Tao Deng, Mala Lakshmi Radhakrishnan, George M. Whitesides
  • Publication number: 20020066978
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Application
    Filed: October 30, 2001
    Publication date: June 6, 2002
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Patent number: 6355198
    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or nonplanar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: March 12, 2002
    Assignee: President and Fellows of Harvard College
    Inventors: Enoch Kim, Younan Xia, Milan Mrksich, Rebecca J. Jackman, Xiao-Mei Zhao, Stephen P. Smith, Mara G. Prentiss, George M. Whitesides, Christian Marzolin
  • Publication number: 20020001855
    Abstract: The invention relates to a new method for conducting parallel manipulations of biological entities with emphasis on measurements of binding strengths between, or elastic strengths of, various biological molecules. In particular, the invention involves the generation and use of high magnetic fields and in particular high magnetic field gradients over extended areas using electromagnetic or permanent magnets in one- or two-dimensional grids, which can be used to measure simultaneously multiple binding interactions. The binding interactions may all be the same or may each be different from the others.
    Type: Application
    Filed: March 22, 2001
    Publication date: January 3, 2002
    Inventors: Mara G. Prentiss, Gary Zabow
  • Patent number: 6180239
    Abstract: Improved method of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: January 30, 2001
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Younan Xia, James L. Wilbur, Rebecca J. Jackman, Enoch Kim, Mara G. Prentiss, Milan Mrksich, Amit Kumar, Christopher B. Gorman, Hans Biebuyck, Karl K. Berggren
  • Patent number: 5900160
    Abstract: Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding.
    Type: Grant
    Filed: July 9, 1996
    Date of Patent: May 4, 1999
    Assignee: President and fellows of Harvard College
    Inventors: George M. Whitesides, Younan Xia, James L. Wilbur, Rebecca J. Jackman, Enoch Kim, Mara G. Prentiss, Milan Mrksich, Amit Kumar, Christopher B. Gorman, Hans Biebuyck, Karl K. Berggren