Patents by Inventor Marc A. Bergendahl

Marc A. Bergendahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11351811
    Abstract: An article is authenticated by providing a magnetic security mark in the form of an optically-passive randomly-generated nanoscale magnetic pattern. The pattern is pre-imaged and this reference image is uploaded to a secure database along with an identifier for the article such as a serial number. A user of the article verifies its authenticity by scanning it magnetically to obtain a scanned image of the magnetic pattern. The serial number is used to retrieve the previously uploaded reference image which is compared to the scanned image. If the images match, the article's authenticity is confirmed. A single article may have multiple magnetic security marks, each unique, placed at predetermined, non-uniform locations. The magnetic patterns are generated using thin film deposition of yttrium iron garnet. In one embodiment the article is a physical key having additional security features, such as mechanical features and a radio-frequency identification chip.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: June 7, 2022
    Assignee: International Business Machines Corporation
    Inventors: Michael Rizzolo, Marc A. Bergendahl, Christopher J. Waskiewicz, Christopher J. Penny
  • Patent number: 11263059
    Abstract: An example operation may include one or more of connecting, by a load leveler, to a blockchain network comprising a plurality of nodes and configured to store a common work item, computing, by the load leveler, loads across the plurality of the nodes that need to execute the common work item upon completion of current tasks, determining, by the load leveler, a network load impact based on execution of a common blockchain consensus checking process on the network nodes, executing, by the load leveler, a work assessment process based on the loads computed across the plurality of the nodes and on the determined network load impact of the blockchain network, and assigning, by the load leveler, new tasks to the nodes based on results of the execution of the work assessment process.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: March 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: Jonathan Fry, Christopher J. Penny, Marc Bergendahl, Christopher J. Waskiewicz, Jean Wynne, James Demarest
  • Patent number: 11257716
    Abstract: According to embodiments of the present invention, a method of forming a self-aligned contact includes depositing an etch-stop liner on a surface of a gate cap and a contact region. A dielectric oxide layer is deposited onto the etch-stop layer. The dielectric oxide layer and the etch-stop liner are removed in a region above the contact region to form a removed region. A contact is deposited in the etched region.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: February 22, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Belyansky, Marc Bergendahl, Victor W. C. Chan, Jeffrey C. Shearer
  • Patent number: 11222820
    Abstract: According to embodiments of the present invention, a method of forming a self-aligned contact includes depositing an etch-stop liner on a surface of a gate cap and a contact region. A dielectric oxide layer is deposited onto the etch-stop layer. The dielectric oxide layer and the etch-stop liner are removed in a region above the contact region to form a removed region. A contact is deposited in the etched region.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: January 11, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Belyansky, Marc Bergendahl, Victor W. C. Chan, Jeffrey C. Shearer
  • Publication number: 20210370705
    Abstract: An article is authenticated by providing a magnetic security mark in the form of an optically-passive randomly-generated nanoscale magnetic pattern. The pattern is pre-imaged and this reference image is uploaded to a secure database along with an identifier for the article such as a serial number. A user of the article verifies its authenticity by scanning it magnetically to obtain a scanned image of the magnetic pattern. The serial number is used to retrieve the previously uploaded reference image which is compared to the scanned image. If the images match, the article's authenticity is confirmed. A single article may have multiple magnetic security marks, each unique, placed at predetermined, non-uniform locations. The magnetic patterns are generated using thin film deposition of yttrium iron garnet. In one embodiment the article is a physical key having additional security features, such as mechanical features and a radio-frequency identification chip.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Inventors: Michael Rizzolo, Marc A. Bergendahl, Christopher J. Waskiewicz, Christopher J. Penny
  • Patent number: 11182722
    Abstract: A method includes monitoring with at least one monitoring tool one or more activities associated with an enterprise. The method further includes analyzing data input from the at least one monitoring tool of the one or more activities, and determining, based on analytics performed on the data input and an implemented policy, when the one or more activities qualifies as an incident. A remedial response responsive to the incident is initiated. The monitoring, analyzing, determining and initiating steps are performed by at least one processing device including a processor operatively coupled to a memory.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Alex Richard Hubbard, Spyridon Skordas, Marc A. Bergendahl, Cody John Murray, Gauri Karve, Lawrence A. Clevenger
  • Publication number: 20210351082
    Abstract: Embodiments of the present invention are directed to fabrication method and resulting structures for vertical tunneling field effect transistors (VFETs) having a dual liner bottom spacer. In a non-limiting embodiment of the invention, a first liner is formed on a top surface of a source or drain (S/D) region and sidewalls of a semiconductor fin. Portions of a spacer are removed to expose a first region and a second region of the first liner. The first region of the first liner is directly on the S/D region and the second region is over the semiconductor fin. A second liner is formed on the first liner. A first portion of the second liner is formed by selectively depositing dielectric material on the exposed first region and exposed second region of the first liner. The first liner and the second liner collectively define the dual liner bottom spacer.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 11, 2021
    Inventors: Eric Miller, Marc A. Bergendahl, Kangguo Cheng, Sean Teehan, John Sporre
  • Patent number: 11152266
    Abstract: Embodiments of the present invention are directed to fabrication method and resulting structures for vertical tunneling field effect transistors (VFETs) having a dual liner bottom spacer. In a non-limiting embodiment of the invention, a first liner is formed on a top surface of a source or drain (S/D) region and sidewalls of a semiconductor fin. Portions of a spacer are removed to expose a first region and a second region of the first liner. The first region of the first liner is directly on the S/D region and the second region is over the semiconductor fin. A second liner is formed on the first liner. A first portion of the second liner is formed by selectively depositing dielectric material on the exposed first region and exposed second region of the first liner. The first liner and the second liner collectively define the dual liner bottom spacer.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: October 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric Miller, Marc A. Bergendahl, Kangguo Cheng, Sean Teehan, John Sporre
  • Publication number: 20210320070
    Abstract: Methods, and devices related to authentication of chips using physical unclonable function (PUF) are disclosed. The semiconductor chip has a substrate having a major surface. The semiconductor chip has a boundary defined on the major surface in accordance with a ground rule associated with a gate cut passing (CT) fin formed on the major surface. The semiconductor chip has multiple non-planar devices fabricated on the surface at the boundary. The CT fin forms a random distribution of field effect transistors (FETs) with varying work function metal (WFM) thickness that includes some FETs that fail the ground rule and other FETs that meet the ground rule. A physical unclonable function (PUF) region is defined in accordance with the random distribution.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 14, 2021
    Inventors: Kangguo Cheng, Eric Miller, Fee Li Lie, Gauri Karve, Marc A. Bergendahl, John Sporre
  • Publication number: 20210320190
    Abstract: Methods, and devices related to authentication of chips using physical unclonable function (PUF) are disclosed. The semiconductor chip includes a substrate. The semiconductor chip includes multiple devices formed on the substrate. Each device includes multiple fins. A gate is formed on the multiple fins with a gate cut (CT) design that results in random distribution of complete gate cut and incomplete gate cut for each of the multiple devices based on a natural process variation in semiconductor manufacturing for each device. A physical unclonable function (PUF) region is defined in accordance with the random distribution.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 14, 2021
    Inventors: Kangguo Cheng, Eric Miller, Fee Li Lie, Gauri Karve, Marc A. Bergendahl, John Ryan Sporre
  • Publication number: 20210305405
    Abstract: A method and structures are used to fabricate a nanosheet semiconductor device. Nanosheet fins including nanosheet stacks including alternating silicon (Si) layers and silicon germanium (SiGe) layers are formed on a substrate and etched to define a first end and a second end along a first axis between which each nanosheet fin extends parallel to every other nanosheet fin. The SiGe layers are undercut in the nanosheet stacks at the first end and the second end to form divots, and a dielectric is deposited in the divots. The SiGe layers between the Si layers are removed before forming source and drain regions of the nanosheet semiconductor device such that there are gaps between the Si layers of each nanosheet stack, and the dielectric anchors the Si layers. The gaps are filled with an oxide that is removed after removing the dummy gate and prior to forming the replacement gate.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Spoore, Sean Teehan
  • Publication number: 20210305247
    Abstract: A method of forming a power rail to semiconductor devices comprising removing a portion of the gate structure forming a gate cut trench separating a first active region of fin structures from a second active region of fin structures. A conformal etch stop layer is formed in the gate cut trench. A fill material is formed on the conformal etch stop layer filling at least a portion of the gate cut trench. The fill material has a composition that is etched selectively to the conformal etch stop layer. A power rail is formed in the gate cut trench. The conformal etch stop layer obstructs lateral etching during forming the power rail to substantially eliminate power rail to gate structure shorting.
    Type: Application
    Filed: April 2, 2021
    Publication date: September 30, 2021
    Applicant: TESSERA, INC.
    Inventors: Marc A. Bergendahl, Andrew M. Greene, Rajasekhar Venigalla
  • Patent number: 11113533
    Abstract: A computer-implemented method executed by a processor for reducing exposure of a plurality of objects to environmental conditions by employing a smart room tracking system is presented. The computer-implemented method includes counting a number of individuals within a space including the plurality of objects via one or more image capture devices and determining whether each individual makes direct eye contact with any of the plurality of objects by evaluating orientation, posture, and eye movement of each individual. The computer-implemented method further includes shielding, via an object viewing controller, an object of the plurality of objects from view when no direct eye contact is determined and making an object of the plurality of objects viewable, via the object viewing controller, when direct eye contact is determined.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: September 7, 2021
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Christopher J. Penny, James J. Demarest, Christopher Waskiewicz, Jean Wynne, Jonathan Fry
  • Patent number: 11075299
    Abstract: Embodiments of the invention are directed to a method that includes forming a fin over a major surface of a substrate. The fin includes an active fin region having a top fin surface and a fin sidewall. The top fin surface is substantially parallel with respect to the major surface, and the fin sidewall is substantially perpendicular with respect to the major surface. A gate is formed over and around a central portion of the fin, the gate having a bottom gate region and a top gate region. The bottom gate region is substantially below the top fin surface and includes a bottom gate region sidewall that is substantially parallel with respect to the fin sidewall. The top gate region is substantially above the top fin surface and includes a top gate region sidewall that is at an angle with respect to the major surface.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric Miller, Gauri Karve, Marc A. Bergendahl, Fee Li Lie, Kangguo Cheng, Sean Teehan
  • Publication number: 20210226032
    Abstract: Embodiments of the invention are directed to a method of forming a semiconductor device on an integrated circuit (IC). The method includes forming a containment structure having a non-sacrificial fin-containment region and a sacrificial fin-containment region, wherein the containment structure is configured to define a source or drain (S/D) cavity. A S/D region is formed in the S/D cavity. The S/D region includes a contained S/D region defined by the containment structure. The S/D region further includes a non-contained S/D region positioned above the containment structure. The IC is exposed to an etchant that is selective to the sacrificial fin-containment region, non-selective to the non-sacrificial fin-containment region, and non-selective to a plurality of spacers on the IC. Exposing the IC to the etchant selectively removes the sacrificial fin-containment region and exposes sidewalls of the contained S/D region.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 22, 2021
    Inventors: Alexander Reznicek, Ruilong Xie, Kangguo Cheng, Marc A. Bergendahl
  • Publication number: 20210217669
    Abstract: A method of forming vertical transport field effect transistor (VTFET) devices is provided. The method includes forming a plurality of vertical fins on an upper insulating layer of a dual insulator layer semiconductor-on-insulator (SeOI) substrate, and forming two masking blocks on the plurality of vertical fins, wherein a portion of a protective layer and a fin template on each of the plurality of vertical fins is exposed between the two masking blocks. The method further includes removing a portion of the upper insulating layer between the two masking blocks to form a first cavity beneath the plurality of vertical fins, and forming a first bottom source/drain in the first cavity below the plurality of vertical fins. The method further includes replacing the two masking blocks with a masking layer patterned to have two mask openings above portions of the upper insulating layer adjacent to the first bottom source/drain.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Inventors: Eric Miller, Marc A. Bergendahl, Kangguo Cheng, John Sporre, Gauri Karve, Fee Li Lie
  • Patent number: 11043581
    Abstract: A method and structures are used to fabricate a nanosheet semiconductor device. Nanosheet fins including nanosheet stacks including alternating silicon (Si) layers and silicon germanium (SiGe) layers are formed on a substrate and etched to define a first end and a second end along a first axis between which each nanosheet fin extends parallel to every other nanosheet fin. The SiGe layers are undercut in the nanosheet stacks at the first end and the second end to form divots, and a dielectric is deposited in the divots. The SiGe layers between the Si layers are removed before forming source and drain regions of the nanosheet semiconductor device such that there are gaps between the Si layers of each nanosheet stack, and the dielectric anchors the Si layers. The gaps are filled with an oxide that is removed after removing the dummy gate and prior to forming the replacement gate.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: June 22, 2021
    Assignee: Tessera, Inc.
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20210151351
    Abstract: Semiconductor devices and methods for forming semiconductor devices include opening at least one contact via through a sacrificial material down to contacts. Sides of the at least one contact via are lined by selectively depositing a barrier on the sacrificial material, the barrier extending along sidewalls of the at least one contact via from a top surface of the sacrificial material down to a bottom surface of the sacrificial material proximal to the contacts such that the contacts remain exposed. A conductive material is deposited in the at least one contact via down to the contacts to form stacked contacts having the hard mask on sides thereof. The sacrificial material is removed.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 20, 2021
    Inventors: Alex Joseph Varghese, Marc A. Bergendahl, Andrew M. Greene, Dallas Lea, Matthew T. Shoudy, Yann Mignot, Ekmini A. De Silva, Gangadhara Raja Muthinti
  • Patent number: 11005646
    Abstract: A blockchain may be used as a stochastic timer. The posting of a blockchain solution for verification may be a trigger that determines an event schedule. Because the only entity that knows when the solution will be posted is the solving entity, the solving entity may be rewarded with the ability to potentially exploit this knowledge. However, because the solving of a blockchain is a competitive process, there is a risk that if the solving entity retains the solution for greater exploitation, then another entity will post the solution and therefore gain the benefit. A blockchain stochastic timer can thus provide the necessary incentive for entities to invest computational resources into blockchain solutions.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: May 11, 2021
    Assignee: International Business Machines Corporation
    Inventors: Jonathan Fry, Christopher J. Penny, James Demarest, Marc Bergendahl, Jean Wynne, Christopher J. Waskiewicz
  • Patent number: 10998314
    Abstract: A method of forming a power rail to semiconductor devices comprising removing a portion of the gate structure forming a gate cut trench separating a first active region of fin structures from a second active region of fin structures. A conformal etch stop layer is formed in the gate cut trench. A fill material is formed on the conformal etch stop layer filling at least a portion of the gate cut trench. The fill material has a composition that is etched selectively to the conformal etch stop layer. A power rail is formed in the gate cut trench. The conformal etch stop layer obstructs lateral etching during forming the power rail to substantially eliminate power rail to gate structure shorting.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: May 4, 2021
    Assignee: Tessera, Inc.
    Inventors: Marc A. Bergendahl, Andrew M. Greene, Rajasekhar Venigalla