Patents by Inventor Marc De Cea Falco

Marc De Cea Falco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11650440
    Abstract: A photovoltaic modulator utilizes free carriers generated by absorption of optical radiation passing through the modulator to achieve ultra-low energy modulation of the radiation. The photovoltaic modulator can also function as an electro-optic transducer for low-power, low-EMI, high-density sensing applications.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: May 16, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Marc De Cea Falco, Amir H. Atabaki, Rajeev J. Ram
  • Patent number: 11624941
    Abstract: Semiconductor optical modulators are described that utilize bipolar junction transistor (BJT) structure within the optical modulator. The junctions within the BJT can be designed and biased to increase modulator efficiency and speed. An optical mode may be located in a selected region of the BJT structure to improve modulation efficiency. The BJT structure can be included in optical waveguides of interferometers and resonators to form optical modulators.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: April 11, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Rajeev J. Ram, Marc De Cea Falco, Jin Xue
  • Patent number: 11506951
    Abstract: Optical read-out of a cryogenic device (such as a superconducting logic or detector element) can be performed with a forward-biased optical modulator that is directly coupled to the cryogenic device without any intervening electrical amplifier. Forward-biasing at cryogenic temperatures enables very high modulation efficiency (1,000-10,000 pm/V) of the optical modulator, and allows for optical modulation with millivolt driving signals and microwatt power dissipation in the cryogenic environment. Modulated optical signals can be coupled out of the cryostat via an optical fiber, reducing the thermal load on the cryostat. Using optical fiber instead of electrical wires can increase the communication bandwidth between the cryogenic environment and room-temperature environment to bandwidth densities as high as Tbps/mm2 using wavelength division multiplexing.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: November 22, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Rajeev J. Ram, Dodd Joseph Gray, Amir H. Atabaki, Marc De Cea Falco
  • Publication number: 20210389612
    Abstract: Semiconductor optical modulators are described that utilize bipolar junction transistor (BJT) structure within the optical modulator. The junctions within the BJT can be designed and biased to increase modulator efficiency and speed. An optical mode may be located in a selected region of the BJT structure to improve modulation efficiency. The BJT structure can be included in optical waveguides of interferometers and resonators to form optical modulators.
    Type: Application
    Filed: April 12, 2021
    Publication date: December 16, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Rajeev J. Ram, Marc De Cea Falco, Jin Xue
  • Publication number: 20210208470
    Abstract: Optical read-out of a cryogenic device (such as a superconducting logic or detector element) can be performed with a forward-biased optical modulator that is directly coupled to the cryogenic device without any intervening electrical amplifier. Forward-biasing at cryogenic temperatures enables very high modulation efficiency (1,000-10,000 pm/V) of the optical modulator, and allows for optical modulation with millivolt driving signals and microwatt power dissipation in the cryogenic environment. Modulated optical signals can be coupled out of the cryostat via an optical fiber, reducing the thermal load on the cryostat. Using optical fiber instead of electrical wires can increase the communication bandwidth between the cryogenic environment and room-temperature environment to bandwidth densities as high as Tbps/mm2 using wavelength division multiplexing.
    Type: Application
    Filed: November 6, 2020
    Publication date: July 8, 2021
    Inventors: Rajeev J. RAM, Dodd Joseph GRAY, Amir H. Atabaki, Marc De Cea Falco