Patents by Inventor Marcel P. Bruchez

Marcel P. Bruchez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210187262
    Abstract: Provided herein are devices and methods used to produce tattoo biosensors that are based on spatially controlled intracutaneous gene delivery of optical reporters driven by specific transcription factor pathways for a given cytokine or other analyte. The biosensors can be specific to a given analyte, or more generically represent the convergence of several cytokines into commonly shared intracellular transcription factor pathways. These biosensors can be delivered as an array in order to monitor multiple cytokines. Biosensor redeployment can enable chronic monitoring from months to years. The tattooed biosensor array of the present invention includes endogenous reporter cells, naturally tuned to each patient's own biology and can be used to reliably measure the state of a patient in real-time.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 24, 2021
    Inventors: O. Burak Ozdoganlar, Marcel P. Bruchez, Phil G. Campbell, Jonathan W. Jarvik, Louis Falo, Geza Erdos
  • Patent number: 10946098
    Abstract: Provided herein is a two-component photosensitizer, which demonstrated robust and selective killing effects for transfected HEK cells and affibody targeted A431 cancer cells when exposed to near infrared light excitation. Free MG2I is a pure and stable fluorogen; it is easy to synthesize and modify, and has no toxicity to cells. Unlike conventional photosensitizers, the dye and FAP itself has no photosensitizing effect until they are bound. Also unlike other activation methods, the activation step is achieved by adding the fluorogen, not the presence of the targeted molecule, requiring an ‘active’ activation instead of a ‘passive’ activation. This method offers the ability to locally switch-on and selective generation of singlet oxygen at the target site and can be used for a wide variety of molecular targets.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: March 16, 2021
    Assignee: Carnegie Mellon University
    Inventors: Marcel P. Bruchez, Jianjun He, Yi Wang
  • Patent number: 10894151
    Abstract: Provided herein are devices and methods used to produce tattoo biosensors that are based on spatially controlled intracutaneous gene delivery of optical reporters driven by specific transcription factor pathways for a given cytokine or other analyte. The biosensors can be specific to a given analyte, or more generically represent the convergence of several cytokines into commonly shared intracellular transcription factor pathways. These biosensors can be delivered as an array in order to monitor multiple cytokines. Biosensor redeployment can enable chronic monitoring from months to years. The tattooed biosensor array of the present invention includes endogenous reporter cells, naturally tuned to each patient's own biology and can be used to reliably measure the state of a patient in real-time.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: January 19, 2021
    Assignees: Carnegie Mellon University, University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: O. Burak Ozdoganlar, Marcel P. Bruchez, Phil G. Campbell, Jonathan W. Jarvik, Louis Falo, Geza Erdos
  • Publication number: 20200078460
    Abstract: Provided herein is a two-component photosensitizer, which demonstrated robust and selective killing effects for transfected HEK cells and affibody targeted A431 cancer cells when exposed to near infrared light excitation. Free MG2I is a pure and stable fluorogen; it is easy to synthesize and modify, and has no toxicity to cells. Unlike conventional photosensitizers, the dye and FAP itself has no photosensitizing effect until they are bound. Also unlike other activation methods, the activation step is achieved by adding the fluorogen, not the presence of the targeted molecule, requiring an ‘active’ activation instead of a ‘passive’ activation. This method offers the ability to locally switch-on and selective generation of singlet oxygen at the target site and can be used for a wide variety of molecular targets.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 12, 2020
    Inventors: Marcel P. Bruchez, Jianjun He, Yi Wang
  • Patent number: 10434177
    Abstract: Provided herein is a two-component photosensitizer, which demonstrated robust and selective killing effects for transfected HEK cells and affibody targeted A431 cancer cells when exposed to near infrared light excitation. Free MG2I is a pure and stable fluorogen; it is easy to synthesize and modify, and has no toxicity to cells. Unlike conventional photosensitizers, the dye and FAP itself has no photosensitizing effect until they are bound. Also unlike other activation methods, the activation step is achieved by adding the fluorogen, not the presence of the targeted molecule, requiring an ‘active’ activation instead of a ‘passive’ activation. This method offers the ability to locally switch-on and selective generation of singlet oxygen at the target site and can be used for a wide variety of molecular targets.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: October 8, 2019
    Assignee: Carnegie Mellon University
    Inventors: Marcel P. Bruchez, Jianjun He, Yi Wang
  • Publication number: 20180280510
    Abstract: Provided herein is a two-component photosensitizer, which demonstrated robust and selective killing effects for transfected HEK cells and affibody targeted A431 cancer cells when exposed to near infrared light excitation. Free MG2I is a pure and stable fluorogen; it is easy to synthesize and modify, and has no toxicity to cells. Unlike conventional photosensitizers, the dye and FAP itself has no photosensitizing effect until they are bound. Also unlike other activation methods, the activation step is achieved by adding the fluorogen, not the presence of the targeted molecule, requiring an ‘active’ activation instead of a ‘passive’ activation. This method offers the ability to locally switch-on and selective generation of singlet oxygen at the target site and can be used for a wide variety of molecular targets.
    Type: Application
    Filed: November 17, 2015
    Publication date: October 4, 2018
    Inventors: Marcel P. Bruchez, Jianjun He, Yi Wang
  • Patent number: 9995679
    Abstract: Biosensor comprising an activatable acceptor fluorogen linked via a linker to a donor which transfers energy to the fluorogen on detecting an analyte wherein the fluorogen component reacts and a 100 fold increase in intensity results when the fluorogen interacts non-covalently with an activator e.g. fluorogen activator peptide.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: June 12, 2018
    Assignee: Carnegie Mellon University
    Inventors: Alan Waggoner, Marcel P. Bruchez, Brigitte F. Schmidt, Subhasish K. Chakraborty
  • Publication number: 20180119077
    Abstract: Provided herein are devices and methods used to produce tattoo biosensors that are based on spatially controlled intracutaneous gene delivery of optical reporters driven by specific transcription factor pathways for a given cytokine or other analyte. The biosensors can be specific to a given analyte, or more generically represent the convergence of several cytokines into commonly shared intracellular transcription factor pathways. These biosensors can be delivered as an array in order to monitor multiple cytokines. Biosensor redeployment can enable chronic monitoring from months to years. The tattooed biosensor array of the present invention includes endogenous reporter cells, naturally tuned to each patient's own biology and can be used to reliably measure the state of a patient in real-time.
    Type: Application
    Filed: April 22, 2016
    Publication date: May 3, 2018
    Inventors: O. Burak Ozdoganlar, Marcel P. Bruchez, Phil G. Campbell, Jonathan W. Jarvik, Louis Falo, Geza Erdos
  • Patent number: 9688743
    Abstract: Provided are biosensors, compositions comprising biosensors, and methods of using biosensors in living cells and organisms. The biosensors are able to be selectively targeted to certain regions or structures within a cell. The biosensors may provide a signal when the biosensor is targeted and/or in response to a property of the cell or organism such as membrane potential, ion concentration or enzyme activity.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: June 27, 2017
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Brigitte F. Schmidt, Christopher S. Szent-Gyorgyi, Alan S. Waggoner, Peter B. Berget, Marcel P. Bruchez, Jonathan W. Jarvik
  • Patent number: 9249306
    Abstract: The present invention presents designs for high extinction quenched “dyedrons” that can be activated by conversion of a single acceptor/quencher in the molecular assembly to a fluorescent state. The quencher is activated by noncovalent binding to a unique complementary expressible fluorogen activating peptide (FAP). In this way, the quencher serves as the homogeneous switch, receiving energy efficiently from each of the donor molecules of the dendronic antenna, and releasing it as fluorescence only when activated by binding. The sum of the extinction of the multiple dyes on the antenna will provide dramatic enhancements in the effective brightness of the probe in standard imaging systems. This approach provides a set of probes with exceptional brightness, specifically targeted to an expressed tag that activates the fluorescence of the dyedron.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: February 2, 2016
    Assignee: Carnegie Mellon University
    Inventors: Marcel P. Bruchez, Lauren A. Ernst, James Fitzpatrick, Chris Szent-Gyorgyi, Brigitte F. Schmidt, Alan Waggoner
  • Patent number: 8993349
    Abstract: Semiconductor nanoparticle complexes comprising semiconductor nanoparticles in association with cationic polymers are described. Also described are methods for enhancing the transport of semiconductor nanoparticles across biological membranes to provide encoded cells. The methods are particularly useful in multiplex settings where a plurality of encoded cells are to be assayed. Kits comprising reagents for performing such methods are also provided.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: March 31, 2015
    Assignee: Life Technologies Corporation
    Inventors: Marcel P. Bruchez, R. Hugh Daniels, Jennifer Dias, Larry C. Mattheakis, Hongjian Liu, Aquanette M. Burt, Berndt Christoffer Lagerholm, Danith H. Ly
  • Publication number: 20140193830
    Abstract: Provided are biosensors, compositions comprising biosensors, and methods of using biosensors in living cells and organisms. The biosensors are able to be selectively targeted to certain regions or structures within a cell. The biosensors may provide a signal when the biosensor is targeted and/or in response to a property of the cell or organism such as membrane potential, ion concentration or enzyme activity.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 10, 2014
    Inventors: Brigitte F. Schmidt, Christopher S. Szent-Gyorgyi, Alan S. Waggoner, Peter B. Berget, Marcel P. Bruchez, Jonathan W. Jarvik
  • Patent number: 8664364
    Abstract: Provided are biosensors, compositions comprising biosensors, and methods of using biosensors in living cells and organisms. The biosensors are able to be selectively targeted to certain regions or structures within a cell. The biosensors may provide a signal when the biosensor is targeted and/or in response to a property of the cell or organism such as membrane potential, ion concentration or enzyme activity.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: March 4, 2014
    Assignee: Carnegie Mellon University
    Inventors: Brigitte F. Schmidt, Christopher S. Szent-Gyorgyi, Alan S. Waggoner, Peter B. Berget, Marcel P. Bruchez, Jonathan W. Jarvik
  • Publication number: 20130244891
    Abstract: Biosensor comprising an activatable acceptor fluorogen linked via a linker to a donor which transfers energy to the fluorogen on detecting an analyte wherein the fluorogen component reacts and a 100 fold increase in intensity results when the fluorogen interacts non-covalently with an activator e.g. fluorogen activator peptide.
    Type: Application
    Filed: May 25, 2011
    Publication date: September 19, 2013
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Alan Waggoner, Marcel P. Bruchez, Brigitte F. Schmidt, Subhasish K. Chakraborty
  • Publication number: 20120252018
    Abstract: The use of semiconductor nanocrystals as detectable labels in various chemical and biological applications is disclosed. The methods find use for detecting a single analyte, as well as multiple analytes by using more than one semiconductor nanocrystal as a detectable label, each of which emits at a distinct wavelength.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 4, 2012
    Applicant: Life Technologies Corporation
    Inventors: Marcel P. Bruchez, R. Hugh Daniels, Stephen A. Empedocles, Vince E. Phillips, Edith Y. Wong, Donald A. Zehnder
  • Publication number: 20120058494
    Abstract: The present invention presents designs for high extinction quenched “dyedrons” that can be activated by conversion of a single acceptor/quencher in the molecular assembly to a fluorescent state. The quencher is activated by noncovalent binding to a unique complementary expressible fluorogen activating peptide (FAP). In this way, the quencher serves as the homogeneous switch, receiving energy efficiently from each of the donor molecules of the dendronic antenna, and releasing it as fluorescence only when activated by binding. The sum of the extinction of the multiple dyes on the antenna will provide dramatic enhancements in the effective brightness of the probe in standard imaging systems. This approach provides a set of probes with exceptional brightness, specifically targeted to an expressed tag that activates the fluorescence of the dyedron.
    Type: Application
    Filed: February 16, 2010
    Publication date: March 8, 2012
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Marcel P. Bruchez, Lauren A. Ernst, James Fitzpatrick, Chris Szent-Gyorgyi, Brigitte F. Schmidt, Alan Waggoner
  • Publication number: 20110159519
    Abstract: Provided are biosensors, compositions comprising biosensors, and methods of using biosensors in living cells and organisms. The biosensors are able to be selectively targeted to certain regions or structures within a cell. The biosensors may provide a signal when the biosensor is targeted and/or in response to a property of the cell or organism such as membrane potential, ion concentration or enzyme activity.
    Type: Application
    Filed: January 24, 2008
    Publication date: June 30, 2011
    Applicant: Carnegie Mellon University
    Inventors: Brigitte F. Schmidt, Christopher S. Szent-Gyorgyi, Alan S. Waggoner, Peter B. Berget, Marcel P. Bruchez, Johathan W. Jarvik
  • Publication number: 20110136139
    Abstract: Semiconductor nanoparticle complexes comprising semiconductor nanoparticles in association with cationic polymers are described. Also described are methods for enhancing the transport of semiconductor nanoparticles across biological membranes to provide encoded cells. The methods are particularly useful in multiplex settings where a plurality of encoded cells are to be assayed. Kits comprising reagents for performing such methods are also provided.
    Type: Application
    Filed: October 15, 2010
    Publication date: June 9, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: MARCEL P. BRUCHEZ, R. HUGH DANIELS, JENNIFER DIAS, LARRY C. MATTHEAKIS, HONGJIAN LIU, AQUANETTE M. BURT, BERNDT CHRISTOFFER LAGERHOLM, DANITH H. LY
  • Publication number: 20100190657
    Abstract: Methods for assaying a sample for a probe polynucleotide are provided. The methods comprise forming a complex between a target on a substrate, the probe polynucleotide that binds to the target, and a conjugate comprising a semiconductor nanocrystal that binds to the probe polynucleotide by way of a tag sequence on the probe polynucleotide. The complex is formed when the probe polynucleotide is present in the sample. The methods are useful in any technique in which the detection of a target that can bind to a probe polynucleotide is desired, for example in fluorescence in situ hybridization. The methods are particularly useful in multiplex settings such as hybridization to microarrays where a plurality of targets are present. Assay complexes produced by such methods and kits useful for performing such methods are also provided.
    Type: Application
    Filed: October 22, 2009
    Publication date: July 29, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Michael BITTNER, Edith Y. Wong, Marcel P. Bruchez, JR.
  • Publication number: 20090176221
    Abstract: The use of semiconductor nanocrystals as detectable labels in various chemical and biological applications is disclosed. The methods find use for detecting a single analyte, as well as multiple analytes by using more than one semiconductor nanocrystal as a detectable label, each of which emits at a distinct wavelength.
    Type: Application
    Filed: May 19, 2008
    Publication date: July 9, 2009
    Applicant: INVITROGEN CORPORATION
    Inventors: Marcel P. Bruchez, R. Hugh Daniels, Stephen A. Empedocles, Vince E. Phillips, Edith Y. Wong, Donald A. Zehnder