Patents by Inventor Mareva B. Fevre

Mareva B. Fevre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190307684
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10376468
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 13, 2019
    Assignees: International Business Machines Corporation, Institute of Bioengineering and Nanotechnology, Biomedical Sciences Institute
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10344115
    Abstract: Condensation polymers are prepared by agitating a mixture comprising glyoxal, a monomer comprising two or three primary aromatic amine groups, an organic solvent, and water at a temperature between 20° C. and 100° C. The resulting solution can be applied to a surface of a substrate, forming an initial film. Curing the initial film layer using two or more heating steps, wherein one of the heat steps is performed at a temperature of 150° C. to 250° C., produces a cured film layer. Depending on the relative amounts of glyoxal and monomer used, the film layer can contain predominantly high Tg imine-containing units or predominantly lower Tg aminal-containing units. All film layers were highly resistant to the solvent used to prepare the polymer. The Tg of the polymer can be about 190° C. to greater than 300° C.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, James L. Hedrick, Gavin O. Jones, Rudy J. Wojtecki
  • Patent number: 10336897
    Abstract: Methods, compounds, and compositions described herein generally relate to hemiaminal organogel networks (HDCNs) and methods of forming HDCNs. In some embodiments, a hemiaminal organogel has a plurality of first polymers, each having a first end and a second end, a plurality of second polymers, each having a first end and a second end, and a plurality of trivalent aminal-hemiaminal linkages. The first end of each polymer of the plurality of first polymers may be covalently bonded to a first trivalent aminal-hemiaminal linkage. The second end of each polymer of the plurality of first polymers may be covalently bonded to a second trivalent aminal-hemiaminal linkage. The first end of each polymer of the plurality of second polymers may be covalently bonded to one of the plurality of trivalent aminal-hemiaminal linkages. The second end of each polymer of the plurality of second polymers may be non-covalently bonded.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki, Mu San Zhang
  • Publication number: 20190177479
    Abstract: Techniques regarding killing of a pathogen with one or more ionene compositions having antimicrobial functionality are provided. For example, one or more embodiments can comprise a method, which can comprise contacting a mycobacterium tuberculosis microbe with a chemical compound. The chemical compound can comprise an ionene unit. Also, the ionene unit can comprise a cation distributed along a molecular backbone. The ionene unit can have antimicrobial functionality. The method can further comprise electrostatically disrupting a membrane of the mycobacterium tuberculosis microbe in response to the contacting.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Publication number: 20190174753
    Abstract: Techniques regarding ionene and/or polyionene compositions with antimicrobial functionalities are provided. For example, one or more embodiments can comprise a chemical compound, which can comprise an ionene unit. The ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a norspermidine structure having a carbonyl group. Also, the ionene unit can have antimicrobial functionality.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chaun Yang, Yi Yan Yang
  • Publication number: 20190174755
    Abstract: Techniques regarding ionene and/or polyionene compositions with antimicrobial functionality and enhanced hydrophilicity are provided. For example, one or more embodiments can regard a chemical compound that can comprise an ionene unit, which can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. The ionene unit can have antimicrobial functionality. Further, the chemical compound can comprise a hydrophilic functional group covalently bonded to the ionene unit. Also, the chemical compound can have carbohydrate mimetic functionality.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang, Mu San Zhang
  • Publication number: 20190174757
    Abstract: Techniques regarding ionene compositions with antimicrobial functionality are provided. For example, one or more embodiments can comprise a monomer, which can comprise a single ionene unit. The single ionene unit can comprise a cation distributed along a molecular backbone. Also, a hydrophobic functional group can be covalently bonded to the molecular backbone, and the single ionene unit can have antimicrobial functionality.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang, Mu San Zhang
  • Publication number: 20190174756
    Abstract: Techniques regarding polymers with antimicrobial functionality are provided. For example, one or more embodiments described herein can regard a polymer, which can comprise a repeating ionene unit. The repeating ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. Further, the repeating ionene unit can have antimicrobial functionality.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Publication number: 20190174754
    Abstract: Techniques regarding amine monomers that can form ionene compositions with antimicrobial functionality are provided. For example, one or more embodiments described herein can comprise a monomer, which can comprise a molecular backbone. The molecular backbone can comprise a norspermidine structure. The norspermidine structure can comprise a tertiary amino group. Also, the tertiary amino group can comprise a functional group, and an amino group of the norspermidine structure can be capable of being ionized.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Publication number: 20190176147
    Abstract: Techniques for localized surface modification for microfluidic applications are provided. In one aspect, a method includes: contacting at least one portion of a surface with at least one tri(m)ethoxysilane-containing solution under conditions sufficient to form at least one silane monolayer having a given contact angle on the surface thereby modifying a flow rate over the surface. The silane monolayer can include a silane derivative selected from: trimethoxysilyl-propoxypolyethyleneoxide (TMS-PPEO), hexadecyl-triethoxysilane (HD-TES), tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (TDF-THO-TES), and combinations thereof. A device modified in accordance with the present techniques is also provided.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Minhua Lu, Mareva B. Fevre, James Hedrick, Vince Siu, Evan Colgan, Myron Plugge
  • Publication number: 20190174747
    Abstract: Techniques regarding chemical compounds with antimicrobial functionality are provided. For example, one or more embodiments describe herein can comprise a monomer that can comprise a molecular backbone. The molecular backbone can comprise a bis(urea)guanidinium structure covalently bonded to a functional group, which can comprise a radical. Also, the monomer can have supramolecular assembly functionality.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang
  • Patent number: 10316161
    Abstract: Materials and methods are described herein that include forming a porous polymer network with antimicrobial and antifouling properties. The antifouling portion may be a polymer, such as polyethylene glycol, and the antimicrobial portion may be a metal, or a different cationic species, such as a quaternary ammonium salt. The method generally includes forming a reaction mixture comprising a formaldehyde, a bridging group, and moieties with antifouling and antimicrobial properties.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: June 11, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Jason T. Wertz, Rudy J. Wojtecki
  • Publication number: 20190167584
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20190048208
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20190048226
    Abstract: According to one or more embodiments, a method of making an antifouling coating includes forming a polythioaminal polymer by reacting a fluorinated primary amine with an aldehyde to form an intermediate imine, and then reacting the intermediate imine with a dithiol. The method further includes depositing the polythioaminal on a substrate, and increasing a temperature of the polythioaminal deposited on the substrate to crosslink the polythioaminal and increase a contact angle of the substrate with crosslinked polythioaminal.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20190040200
    Abstract: In some embodiments, a product, such as a thermoset, has a polyhexahydrotriazine and a self-polymerized cross-linkable polymer. In some embodiments, a product is the reaction product of a diamine, an aldehyde, and a compound having an ?,?-unsaturated electron withdrawing moiety.
    Type: Application
    Filed: October 10, 2018
    Publication date: February 7, 2019
    Inventors: Dylan J. BODAY, Mareva B. FEVRE, Jeannette M. GARCIA, James L. HEDRICK, Rudy J. WOJTECKI
  • Patent number: 10167367
    Abstract: A block copolymer includes a water-soluble block that is bonded to one or more hydrophobic polycarbonate blocks that include pendant fluoroaryl substituents.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Mu San Zhang
  • Publication number: 20180340037
    Abstract: Condensation polymers are prepared by agitating a mixture comprising glyoxal, a monomer comprising two or three primary aromatic amine groups, an organic solvent, and water at a temperature between 20° C. and 100° C. The resulting solution can be applied to a surface of a substrate, forming an initial film. Curing the initial film layer using two or more heating steps, wherein one of the heat steps is performed at a temperature of 150° C. to 250° C., produces a cured film layer. Depending on the relative amounts of glyoxal and monomer used, the film layer can contain predominantly high Tg imine-containing units or predominantly lower Tg aminal-containing units. All film layers were highly resistant to the solvent used to prepare the polymer. The Tg of the polymer can be about 190° C. to greater than 300° C.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 29, 2018
    Inventors: Dylan J. Boday, Mareva B. Fevre, James L. Hedrick, Gavin O. Jones, Rudy J. Wojtecki
  • Patent number: 10118993
    Abstract: In some embodiments, a product, such as a thermoset, has a polyhexahydrotriazine and a self-polymerized cross-linkable polymer. In some embodiments, a product is the reaction product of a diamine, an aldehyde, and a compound having an ?,?-unsaturated electron withdrawing moiety.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: November 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki