Patents by Inventor Maria-Emmanuella Sotiropoulou

Maria-Emmanuella Sotiropoulou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160053670
    Abstract: A prechamber spark plug may have a prechamber having a pre-determined aspect ratio and hole pattern to achieve particular combustion performance characteristics. The aspect ratio and hole pattern may induce a rotational flow of fuel-air in-filling streams inside the prechamber volume. The rotational flow of the fuel-air mixture may include both radial flow and axial flow characteristics based on the aspect ratio and hole pattern. Axial flow characteristics can include a first axial direction proximate the periphery of the rotational flow and a counter second axial direction approaching the center of the rotational flow. The radial and axial flow characteristics may further include radial air-fuel ratio stratification and/or axial air-fuel ratio stratification. The rotational flow, the radial flow and the axial flow may be adjusted by alteration of the aspect ratio and hole pattern to achieve particular combustion performance characteristics in relation to a wide variety of spark gap geometries.
    Type: Application
    Filed: November 1, 2015
    Publication date: February 25, 2016
    Inventors: Luigi P. Tozzi, Maria-Emmanuella Sotiropoulou
  • Publication number: 20160053671
    Abstract: Generally, embodiments of a pre-chamber unit having a pre-combustion chamber including one or more induction ports in a configuration which achieves flow fields and flow field forces inside the pre-combustion chamber which act to direct flame growth away quenching surface of the pre-combustion chamber.
    Type: Application
    Filed: November 1, 2015
    Publication date: February 25, 2016
    Inventors: Maria-Emmanuella Sotiropoulou, Luigi P. Tozzi
  • Publication number: 20160053673
    Abstract: In certain embodiments with large size prechambers and/or with prechambers that have large spark-gap electrode assemblies, a poor scavenge of the crevice volume may cause deterioration of the preignition margin, which then may limit the power rating of the engine, may cause the flow velocity field of the fuel-air mixture to be excessively uneven and may result in the deterioration of the misfire limit. One or more auxiliary scavenging ports may allow admission of fuel rich mixture to the crevice volume, thereby cooling the residual gases and preventing occurrence of preignition. More organized and powerful flow velocity fields may be obtained in the spark-gap electrode assembly region. This condition may result in a significant extension of the flammability limit and may significantly improve the combustion efficiency of the prechamber. Passive prechambers using the active scavenge concept may increase the engine power output and reduce the emission of pollutants from engine combustion.
    Type: Application
    Filed: November 1, 2015
    Publication date: February 25, 2016
    Inventors: Maria Emmanuella Sotiropoulou, Luigi P. Tozzi
  • Publication number: 20160047295
    Abstract: Generally, embodiments of a pre-chamber unit having a pre-combustion chamber including one or more induction ports in a configuration which achieves flow fields and flow field forces inside the pre-combustion chamber which act to direct flame growth away quenching surface of the pre-combustion chamber.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventors: Maria-Emmanuella Sotiropoulou, Luigi P. Tozzi
  • Publication number: 20160047294
    Abstract: In certain embodiments with large size prechambers and/or with prechambers that have large spark-gap electrode assemblies, a poor scavenge of the crevice volume may cause deterioration of the preignition margin, which then may limit the power rating of the engine, may cause the flow velocity field of the fuel-air mixture to be excessively uneven and may result in the deterioration of the misfire limit. One or more auxiliary scavenging ports may allow admission of fuel rich mixture to the crevice volume, thereby cooling the residual gases and preventing occurrence of preignition. More organized and powerful flow velocity fields may be obtained in the spark-gap electrode assembly region. This condition may result in a significant extension of the flammability limit and may significantly improve the combustion efficiency of the prechamber. Passive prechambers using the active scavenge concept may increase the engine power output and reduce the emission of pollutants from engine combustion.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventors: Maria Emmanuella Sotiropoulou, Luigi P. Tozzi
  • Publication number: 20150176474
    Abstract: A prechamber spark plug may have a prechamber having a pre-determined aspect ratio and hole pattern to achieve particular combustion performance characteristics. The aspect ratio and hole pattern may induce a rotational flow of fuel-air in-filling streams inside the prechamber volume. The rotational flow of the fuel-air mixture may include both radial flow and axial flow characteristics based on the aspect ratio and hole pattern. Axial flow characteristics can include a first axial direction proximate the periphery of the rotational flow and a counter second axial direction approaching the center of the rotational flow. The radial and axial flow characteristics may further include radial air-fuel ratio stratification and/or axial air-fuel ratio stratification. The rotational flow, the radial flow and the axial flow may be adjusted by alteration of the aspect ratio and hole pattern to achieve particular combustion performance characteristics in relation to a wide variety of spark gap geometries.
    Type: Application
    Filed: February 28, 2015
    Publication date: June 25, 2015
    Inventors: Luigi P. Tozzi, Maria-Emmanuella Sotiropoulou
  • Patent number: 9004042
    Abstract: A prechamber spark plug may have a prechamber having a pre-determined aspect ratio and hole pattern to achieve particular combustion performance characteristics. The aspect ratio and hole pattern may induce a rotational flow of fuel-air in-filling streams inside the prechamber volume. The rotational flow of the fuel-air mixture may include both radial flow and axial flow characteristics based on the aspect ratio and hole pattern. Axial flow characteristics can include a first axial direction proximate the periphery of the rotational flow and a counter second axial direction approaching the center of the rotational flow. The radial and axial flow characteristics may further include radial air-fuel ratio stratification and/or axial air-fuel ratio stratification. The rotational flow, the radial flow and the axial flow may be adjusted by alteration of the aspect ratio and hole pattern to achieve particular combustion performance characteristics in relation to a wide variety of spark gap geometries.
    Type: Grant
    Filed: September 1, 2012
    Date of Patent: April 14, 2015
    Assignee: Prometheus Applied Technologies, LLC
    Inventors: Luigi P Tozzi, Maria-Emmanuella Sotiropoulou
  • Publication number: 20140261296
    Abstract: In certain embodiments with large size prechambers and/or with prechambers that have large spark-gap electrode assemblies, a poor scavenge of the crevice volume may cause deterioration of the preignition margin, which then may limit the power rating of the engine, may cause the flow velocity field of the fuel-air mixture to be excessively uneven and may result in the deterioration of the misfire limit. One or more auxiliary scavenging ports may allow admission of fuel rich mixture to the crevice volume, thereby cooling the residual gases and preventing occurrence of preignition. More organized and powerful flow velocity fields may be obtained in the spark-gap electrode assembly region. This condition may result in a significant extension of the flammability limit and may significantly improve the combustion efficiency of the prechamber. Passive prechambers using the active scavenge concept may increase the engine power output and reduce the emission of pollutants from engine combustion.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: Prometheus Applied Technologies, LLC
    Inventors: Maria Emmanuella Sotiropoulou, Luigi P. Tozzi
  • Publication number: 20140102404
    Abstract: Generally, embodiments of a pre-chamber unit having a pre-combustion chamber including one or more induction ports in a configuration which achieves flow fields and flow field forces inside the pre-combustion chamber which act to direct flame growth away quenching surface of the pre-combustion chamber.
    Type: Application
    Filed: December 30, 2011
    Publication date: April 17, 2014
    Applicant: Prometheus Applied Technologies, LLC
    Inventors: Maria-Emmanuella Sotiropoulou, Luigi P. Tozzi
  • Publication number: 20140076274
    Abstract: In certain embodiments, a time-varying spark current ignition system can be applied to improve spark plug ignitability performance and durability as compared to conventional spark ignition systems. Two performance parameters of interest are spark plug life (durability) and spark plug ignitability. In certain embodiments, spark plug life can be extended by applying a spark current amplitude as low as possible without causing quenching of the flame kernel while it is traveling within an electrode gap and/or by applying spark current of a long enough duration to allow the spark/flame kernel to clear a spark plug gap. In certain embodiments, ignitability can be improved by applying a high enough spark current amplitude to sustain the flame kernel once outside the spark plug gap and/or by applying a spark current for long enough to sustain the flame kernel once outside the spark plug gap.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 20, 2014
    Applicant: Prometheus Applied Technologies, LLC
    Inventors: Luigi P. Tozzi, David Thomas Lepley, Maria Emmanuella Sotiropoulou, Joseph Martin Lepley, Steven B. Pirko
  • Publication number: 20140060479
    Abstract: In certain embodiments, a two-stage precombustion chamber may be used to reduce engine NOx levels, with fueled precombustion chambers, while maintaining comparable engine power output and thermal efficiency. One or more fuel admission points may be located in either the first prechamber stage or the second prechamber stage. A more efficient overall combustion characterized by low levels of NOx formation may be achieved by a two-stage precombustion chamber system while generating very high energy flame jets emerging from the second prechamber stage into the main combustion chamber. A first prechamber stage may be substantially smaller than a second prechamber stage.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 6, 2014
    Inventors: Luigi P. Tozzi, Maria Emmanuella Sotiropoulou, David Thomas Lepley
  • Publication number: 20130055986
    Abstract: A prechamber spark plug may have a prechamber having a pre-determined aspect ratio and hole pattern to achieve particular combustion performance characteristics. The aspect ratio and hole pattern may induce a rotational flow of fuel-air in-filling streams inside the prechamber volume. The rotational flow of the fuel-air mixture may include both radial flow and axial flow characteristics based on the aspect ratio and hole pattern. Axial flow characteristics can include a first axial direction proximate the periphery of the rotational flow and a counter second axial direction approaching the center of the rotational flow. The radial and axial flow characteristics may further include radial air-fuel ratio stratification and/or axial air-fuel ratio stratification. The rotational flow, the radial flow and the axial flow may be adjusted by alteration of the aspect ratio and hole pattern to achieve particular combustion performance characteristics in relation to a wide variety of spark gap geometries.
    Type: Application
    Filed: September 1, 2012
    Publication date: March 7, 2013
    Applicant: PROMETHEUS APPLIED TECHNOLOGIES, LLC
    Inventors: Luigi P Tozzi, Maria-Emmanuella Sotiropoulou