Patents by Inventor Marios C. Papaefthymiou

Marios C. Papaefthymiou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110084774
    Abstract: An architecture for resonant clock distribution networks is proposed. The proposed architecture allows for the energy-efficient operation of the resonant clock distribution network in conventional mode, so that it meets target specifications for the clock waveform. Such an architecture is generally applicable to semiconductor devices with multiple clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, ASICs, and SOCs. Moreover, it is applicable to at-speed testing and to binning of semiconductor devices according to achievable performance levels.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: Cyclos Semiconductor, Inc.
    Inventors: Marios C. Papaefthymiou, Alexander Ishii
  • Publication number: 20110084772
    Abstract: An inductor architecture for resonant clock distribution networks is described. This architecture allows for the adjustment of the natural frequency of a resonant clock distribution network, so that it achieves energy-efficient operation at multiple clock frequencies. The proposed architecture exhibits no inductor overheads. Such an architecture is generally applicable to semiconductor devices with multiple clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, ASICs, and SOCs. Moreover, it is applicable to the binning of semiconductor devices according to achievable performance levels.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: Cyclos Semiconductor, Inc.
    Inventors: Marios C. Papaefthymiou, Alexander Ishii
  • Publication number: 20110084773
    Abstract: A resonant clock distribution network architecture is proposed that is capable of single-step operation through the use of selective control in the resonant clock drivers and the deployment of flip-flops that require the clock to remain stable for a sufficiently long time between any two consecutive state updates. Such a network is generally applicable to semiconductor devices with various clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, ASICs, and SOCs.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: Cyclos Semiconductor, Inc.
    Inventors: Marios C. Papaefthymiou, Alexander Ishii
  • Publication number: 20110084775
    Abstract: A resonant clock distribution network architecture is proposed that enables a resonant clock network to track the impact of parameter variations on the insertion delay of a conventional clock distribution network, thus limiting clock skew between the two networks and yielding increased performance. Such a network is generally applicable to semiconductor devices with various clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, ASICs, and SOCs.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: Cyclos Semiconductor, Inc.
    Inventors: Marios C. Papaefthymiou, Alexander Ishii
  • Patent number: 7719317
    Abstract: Disclosed herein is a digital system that includes a distribution network to carry a reference clock, and a circuit domain coupled to the distribution network to receive the reference clock for synchronous operation in accordance with the reference clock. The circuit domain includes a clock generator driven by the reference clock to generate a resonant clock signal, an input port to receive a control signal, and a gate coupled to the input port to discontinue application of the resonant clock signal within the circuit domain based on the control signal.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: May 18, 2010
    Assignee: The Regents of the University of Michigan
    Inventors: Juang-Ying Chueh, Jerry Kao, Visvesh Sathe, Marios C. Papaefthymiou
  • Patent number: 7719316
    Abstract: Disclosed herein is a digital system that includes a distribution network to carry a reference clock and a plurality of circuit domains coupled to the distribution network to receive the reference clock for synchronous operation in accordance with the reference clock. Each circuit domain of the plurality of circuit domains includes a respective clock generator driven by the reference clock to generate a resonant clock signal, respective circuitry coupled to the clock generator to operate in accordance with the resonant clock signal, with the circuitry including a capacitive load for the resonant clock signal and a respective inductance coupled to the circuitry and the clock generator to resonate the capacitive load of the circuitry.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: May 18, 2010
    Assignee: The Regents of the University of Michigan
    Inventors: Juang-Ying Chueh, Jerry Kao, Visvesh Sathe, Marios C. Papaefthymiou
  • Patent number: 7622977
    Abstract: Disclosed herein are digital systems and methods for use with a ramped clock signal. The digital system includes an input element having a data input to receive a data signal, a control input to receive a control signal, and a dynamic node to be driven by the ramped clock signal. The digital system further includes a static memory element having an input at the dynamic node and is configured to reside in an operational state in accordance with the data signal and the ramped clock signal. The input element further includes a switch coupled to the control input to condition updating of the operational state based on the control signal without decoupling the ramped clock signal from the dynamic node. In this way, distribution and delivery of the ramped clock signal to the digital system is continued to facilitate recovery of clock signal energy from the digital system.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: November 24, 2009
    Assignee: The Regents of the University of Michigan
    Inventors: Marios C. Papaefthymiou, Conrad H. Ziesler
  • Publication number: 20090027085
    Abstract: A clock and data distribution network is proposed that distributes clock and data signals without buffers, thus achieving very low jitter, skew, loose timing requirements, and energy consumption. Such network uses resonant drivers and is generally applicable to architectures for programmable logic devices (PLDs) such as field programmable gate arrays (FPGAs), as well as other semiconductor devices with multiple clock networks operating at various clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, applications specific integrated circuits (ASICs), and Systems-on-a-Chip (SOCs).
    Type: Application
    Filed: May 21, 2008
    Publication date: January 29, 2009
    Inventors: Alexander T. Ishii, Marios C. Papaefthymiou
  • Publication number: 20080303552
    Abstract: Disclosed herein is a digital system that includes a distribution network to carry a reference clock and a plurality of circuit domains coupled to the distribution network to receive the reference clock for synchronous operation in accordance with the reference clock. Each circuit domain of the plurality of circuit domains includes a respective clock generator driven by the reference clock to generate a resonant clock signal, respective circuitry coupled to the clock generator to operate in accordance with the resonant clock signal, with the circuitry including a capacitive load for the resonant clock signal and a respective inductance coupled to the circuitry and the clock generator to resonate the capacitive load of the circuitry.
    Type: Application
    Filed: December 3, 2007
    Publication date: December 11, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Juang-Ying Chueh, Jerry Kao, Visvesh Sathe, Marios C. Papaefthymiou
  • Publication number: 20080303576
    Abstract: Disclosed herein is a digital system that includes a distribution network to carry a reference clock, and a circuit domain coupled to the distribution network to receive the reference clock for synchronous operation in accordance with the reference clock. The circuit domain includes a clock generator driven by the reference clock to generate a resonant clock signal, an input port to receive a control signal, and a gate coupled to the input port to discontinue application of the resonant clock signal within the circuit domain based on the control signal.
    Type: Application
    Filed: December 3, 2007
    Publication date: December 11, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Juang-Ying Chueh, Jerry Kao, Visvesh Sathe, Marios C. Papaefthymiou
  • Publication number: 20080150605
    Abstract: Disclosed herein is a digital system that includes a distribution network having a path to carry a reference clock and an adjustable delay element disposed along the path, and first and second clock domains coupled to the distribution network to receive the reference clock and configured to be driven by respective clock waveforms, each of which has a frequency in common with the reference clock. The digital system further includes a phase detector coupled to the first and second clock domains to generate a phase difference signal based on the clock waveforms, and a control circuit coupled to the phase detector and configured to adjust the adjustable delay element based on the phase difference signal.
    Type: Application
    Filed: December 3, 2007
    Publication date: June 26, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Juang-Ying Chueh, Jerry Kao, Visvesh Sathe, Marios C. Papaefthymiou, Conrad Ziesler
  • Patent number: 7355454
    Abstract: A boost circuit is disclosed that includes a plurality of transistors connected between complementary phases of a clock signal. The boost circuit further includes a first electrical node connected between at least two of the plurality of transistors wherein the plurality of transistors are configured to generate a second voltage from a first voltage at the electrical node in response to the clock signal.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: April 8, 2008
    Assignee: The Regents of the University of Michigan
    Inventors: Marios C. Papaefthymiou, Visvesh S. Sathe, Conrad H. Ziesler
  • Patent number: 6879190
    Abstract: The present invention provides an energy recovering driver that includes a pull-up control, a pull-down control and a transmission gate. The pull up control is responsive to a pull-up control signal and a clock signal to turn the transmission gate ON and OFF and predetermined positions of the clock signal. The pull-down control is responsive to a pull-down control signal and the clock signal to turn the transmission gate ON and OFF at other predetermined locations of the clock signal. The transmission gate transmits the clock signal when at an ON condition and does not transmit the clock signal when in an OFF condition.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: April 12, 2005
    Assignee: The Regents of the University of Michigan
    Inventors: Joohee Kim, Marios C. Papaefthymiou
  • Patent number: 6777992
    Abstract: A flip-flop includes a charge storage area that stores a logic voltage indicating a logic state of the flip-flop, a first transistor having a source or drain connected to a clock signal generating circuit, a second transistor having a source or drain connected to the clock signal generating circuit, a clock signal generated by the clock signal generating circuit that is ramped or sinusoidal, and a latching circuit that latches a latch voltage value based on voltages at the first transistor and the second transistor. The charge storage area supplies a first voltage representing a state of the storage voltage to a gate of the first transistor and supplies a second voltage to a gate of the second transistor.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: August 17, 2004
    Assignee: The Regents of the University of Michigan
    Inventors: Conrad H. Ziesler, Marios C. Papaefthymiou
  • Patent number: 6742132
    Abstract: A clock signal generating circuit includes an oscillator portion that sustains a ramped oscillating clock signal in a memory storage device electrically connected to the oscillator portion, a switch portion that supplements electrical energy to the oscillator portion, and a cycle controller connected to the oscillator portion and the switch portion to supplement energy to the oscillator portion when a peak voltage or current level of the clock signal falls below a predetermined value.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: May 25, 2004
    Assignee: The Regents of the University of Michigan
    Inventors: Conrad H. Ziesler, Marios C. Papaefthymiou
  • Publication number: 20030201803
    Abstract: The present invention provides an energy recovering driver that includes a pull-up control, a pull-down control and a transmission gate. The pull up control is responsive to a pull-up control signal and a clock signal to turn the transmission gate ON and OFF and predetermined positions of the clock signal. The pull-down control is responsive to a pull-down control signal and the clock signal to turn the transmission gate ON and OFF at other predetermined locations of the clock signal. The transmission gate transmits the clock signal when at an ON condition and does not transmit the clock signal when in an OFF condition.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 30, 2003
    Inventors: Joohee Kim, Marios C. Papaefthymiou
  • Publication number: 20030189451
    Abstract: A flip-flop includes a charge storage area that stores a logic voltage indicating a logic state of the flip-flop, a first transistor having a source or drain connected to a clock signal generating circuit, a second transistor having a source or drain connected to the clock signal generating circuit, a clock signal generated by the clock signal generating circuit that is ramped or sinusoidal, and a latching circuit that latches a latch voltage value based on voltages at the first transistor and the second transistor. The charge storage area supplies a first voltage representing a state of the storage voltage to a gate of the first transistor and supplies a second voltage to a gate of the second transistor.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 9, 2003
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Conrad H. Ziesler, Marios C. Papaefthymiou
  • Publication number: 20030191977
    Abstract: A clock signal generating circuit includes an oscillator portion that sustains a ramped oscillating clock signal in a memory storage device electrically connected to the oscillator portion, a switch portion that supplements electrical energy to the oscillator portion, and a cycle controller connected to the oscillator portion and the switch portion to supplement energy to the oscillator portion when a peak voltage or current level of the clock signal falls below a predetermined value.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 9, 2003
    Applicant: The Regents of the University of Michigan
    Inventors: Conrad Havluj Ziesler, Marios C. Papaefthymiou