Patents by Inventor Mark Cronin
Mark Cronin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20120121820Abstract: A method of manufacturing a nanopatterned biophotonic structure includes forming a customized nanopattern mask on a substrate using E-beam lithography, providing a biopolymer matrix solution, depositing the biopolymer matrix solution on the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer film. A surface of the film is formed with the nanopattern mask, or a nanopattern is machined directly on a surface of the film using E-beam lithograpy such that the biopolymer film exhibits a spectral signature corresponding to the E-beam lithograpy nanopattern. The resulting bio-compatible nanopatterned biophotonic structures may be made from silk, may be biodegradable, and may be bio-sensing devices. The biophotonic structures may employ nanopatterned masks based on non-periodic photonic lattices, and the biophotonic structures may be designed with specific spectral signatures for use in probing biological substances, including displaying optical activity in the form of opalescence.Type: ApplicationFiled: November 5, 2008Publication date: May 17, 2012Applicants: TRUSTEES OF BOSTON UNIVERSITY, TRUSTEES OF TUFTS COLLEGEInventors: David Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi, Luca Dal Negro
-
Publication number: 20110288084Abstract: The present invention relates to compounds of Formula (I) and pharmaceutically acceptable salts thereof, to their use in the treatment of bacterial infections, and to their methods of preparation.Type: ApplicationFiled: November 13, 2009Publication date: November 24, 2011Applicant: ASTRAZENECA ABInventors: Mark Cronin, Bolin Geng, Folkert Reck
-
Publication number: 20100144717Abstract: The present invention relates to compounds of Formula (I): and pharmaceutically acceptable salts thereof, to their use in the treatment of bacterial infections, and to their methods of preparation.Type: ApplicationFiled: December 15, 2006Publication date: June 10, 2010Inventors: Janelle Comita-Prevoir, Mark Cronin, Bolin Geng, Andrew Aydon Godfrey, Folkert Reck
-
Publication number: 20100120116Abstract: A method of manufacturing a nanopatterned biopolymer optical device includes providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, providing a substrate with a nanopatterned surface, casting the biopolymer matrix solution on the nanopatterned surface of the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer film on the substrate, where the solidified biopolymer film is formed with a surface having a nanopattern thereon. In another embodiment, the method also includes annealing the solidified biopolymer film. A nanopatterned biopolymer optical device includes a solidified biopolymer film with a surface having a nanopattern is also provided.Type: ApplicationFiled: November 5, 2007Publication date: May 13, 2010Applicant: TRUSTEES OF TUFTS COLLEGEInventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi
-
Publication number: 20100096763Abstract: A method of manufacturing a biopolymer optofluidic device including providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, providing a substrate, casting the biopolymer matrix solution on the substrate, embedding a channel mold in the biopolymer matrix solution, drying the biopolymer matrix solution to solidify biopolymer optofluidic device, and extracting the embedded channel mold to provide a fluidic channel in the solidified biopolymer optofluidic device. In accordance with another aspect, an optofluidic device is provided that is made of a biopolymer and that has a channel therein for conveying fluid.Type: ApplicationFiled: November 5, 2007Publication date: April 22, 2010Applicant: TRUSTEES OF TUFTS COLLEGEInventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi
-
Publication number: 20100070068Abstract: A method of manufacturing a biopolymer sensor including providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, adding a biological material in the biopolymer matrix, providing a substrate, casting the matrix solution on the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer sensor on the substrate. A biopolymer sensor is also provided that includes a solidified biopolymer film with an embedded biological material.Type: ApplicationFiled: November 5, 2007Publication date: March 18, 2010Applicant: TRUSTEES OF TUFTS COLLEGEInventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi
-
Publication number: 20100068740Abstract: A method of manufacturing a microfluidic device having at least one cylindrical microchannel includes providing a substrate, casting an uncured polymer matrix solution onto the substrate, embedding an elongated rod in the uncured polymer matrix solution, curing the polymer matrix solution to form a solidified body, and extracting the elongated rod to form the cylindrical microchannel in the solidified body. In another embodiment, the method includes forming an optical feature on a surface of the microfluidic device. A microfluidic device is also provided, the device including a polymer body, and at least one cylindrical microchannel in the polymer body, the cylindrical microchannel having a diameter between approximately 40 ?m and 250 ?m, inclusive. An additional microfluidic device is provided that functions as an optofluidic spectrometer.Type: ApplicationFiled: November 5, 2007Publication date: March 18, 2010Applicant: TRUSTEES OF TUFTS COLLEGEInventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi, Hannah Perry
-
Publication number: 20100065784Abstract: A method of manufacturing a biopolymer optical device includes providing a polymer, providing a substrate, casting the polymer on the substrate, and enzymatically polymerizing an organic compound to generate a conducting polymer between the provided polymer and the substrate. The polymer may be a biopolymer such as silk and may be modified using organic compounds such as tyrosines to provide a molecular-level interface between the provided bulk biopolymer of the biopolymer optical device and a substrate or other conducting layer via a tyrosine-enzyme polymerization. The enzymatically polymerizing may include catalyzing the organic compound with peroxidase enzyme reactions. The result is a carbon-carbon conjugated backbone that provides polymeric “wires” for use in polymer and biopolymer optical devices. An all organic biopolymer electroactive material is thereby provided that provides optical functions and features.Type: ApplicationFiled: November 5, 2007Publication date: March 18, 2010Applicant: TRUSTEES OF TUFTS COLLEGEInventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi
-
Publication number: 20100063404Abstract: A method of manufacturing a biopolymer optical waveguide includes providing a biopolymer, unwinding the biopolymer progressively to extract individual biopolymer fibers, and putting the unwound fibers under tension. The tensioned fibers are then cast in a different polymer to form a biopolymer optical waveguide that guides light due to the difference in indices of refraction between the biopolymer and the different polymer. The optical fibers may be used in biomedical applications and can be inserted in the body as transmissive media. Printing techniques may be used to manufacture the biopolymer optical waveguides.Type: ApplicationFiled: November 5, 2007Publication date: March 11, 2010Applicant: TRUSTEES OF TUFTS COLLEGEInventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi
-
Publication number: 20100046902Abstract: A method of manufacturing a biopolymer photonic crystal includes providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, providing a substrate, casting the matrix solution on the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer film. A surface of the film is formed with a nanopattern, or a nanopattern is machined on a surface of the film. In another embodiment, a plurality of biopolymer films is stacked together. A photonic crystal is also provided that is made of a biopolymer and has a nanopatterned surface. In another embodiment, the photonic crystal includes a plurality of nanopatterned films that are stacked together.Type: ApplicationFiled: November 5, 2007Publication date: February 25, 2010Applicant: TRUSTEES OF TUFTS COLLEGEInventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi
-
Patent number: 5594586Abstract: Limiting quadratic processing and compansion in photorefractive two beam coupling is disclosed. Two-beam coupling in photorefractive barium titanate employs the imaged intensity of the signal to amplify the reference beam while maintaining the phase of the reference beam. The phase distorted signal beam is converted to that of the controlled phase of the reference beam. The high pump limit of amplification in this two-beam coupling device produces an amplitude compressed output to reduce multiplicative noise. Lost contrast of the image is thereafter restored. Beam clean-up of a non-intelligence bearing beam can be carried out by a similar process; a low pass filter consisting of a pinhole plate can be used in place of the second photorefractive crystal in the Fourier plane and only the planar wavefront portion will pass through the pinhole and may be collimated by a lens to provide a cleaned planar output beam.Type: GrantFiled: May 2, 1994Date of Patent: January 14, 1997Assignee: The United States of America as represented by the Secretary of the Air ForceInventors: Jehad Khoury, Charles L. Woods, Mark Cronin-Golomb, Jack Fu
-
Patent number: 5493444Abstract: An all-optical nonlinear joint transform correlator has been implemented for the first time without using a spatial light modulator and digital processing in the Fourier plane. The correlator utilizes energy transfer from two-beam coupling in the Fourier plane. A compressional nonlinearity in the hard-clipped regime is implemented by pumping a weak plane wave with the intense joint spectrum of the reference and signal images. Operation of this device rivals or exceeds that of the phase-only filter for detecting objects in cluttered noise. Experimental results are compared with both plane wave and beam propagation simulations.Type: GrantFiled: April 28, 1994Date of Patent: February 20, 1996Assignee: The United States of America as represented by the Secretary of the Air ForceInventors: Jehad Khoury, Charles L. Woods, Peter D. Gianino, Mark Cronin-Golomb
-
Patent number: 5018801Abstract: Achromatic volume holograms are attained for broad band phase conjugation and image reconstruction having bandwidths of 250 nanometers. The holograms are generated by means of a diffraction grating having a predetermined angle of tilt. Achromaticity is achieved by tilting the holographic recording medium at the same predetermined angle.Type: GrantFiled: June 1, 1990Date of Patent: May 28, 1991Assignee: Tufts UniversityInventors: Mark Cronin-Golomb, Robert A. Gonsalves
-
Patent number: 4979828Abstract: An interferometric device for measuring optical thin film parameters such as refractive index, thickness and absorption uses phase conjugate mirrors in place of standard mirrors. The optical thin film for which the refractive index, thickness and absorption are determined acts as a beam-splitter in the interferometer.Type: GrantFiled: November 13, 1989Date of Patent: December 25, 1990Assignee: Tufts UniversityInventors: Mark Cronin-Golomb, Joseph Shamir
-
Patent number: 4529273Abstract: A passive (self-pumped) phase conjugate mirror uses a third-order nonlinear polarization medium, either of the refractive type (effective nonlinear) or the actual nonlinear type, with an optical system of one or more mirrors to reflect back through the medium a coherent incident beam diffracted by the medium. With two mirrors, they may be aligned to form a linear optical cavity containing the nonlinear medium, or they may be so oriented on one side of the medium that the incident beam transmitted through the medium is reflected back through the medium at an angle with the incident beam, and diffracted light from the incident beam is reflected back through the medium in the opposite direction coincident with the incident beam. A passive phase conjugate mirror may replace an end mirror of an optical cavity for a laser gain medium. Phase distortions of the laser beam in the laser cavity are corrected by the passive phase conjugate mirror.Type: GrantFiled: December 21, 1982Date of Patent: July 16, 1985Assignee: California Institute of TechnologyInventors: Mark Cronin-Golomb, Baruch Fischer, Jeffrey O. White, Amnon Yariv