Patents by Inventor Mark David Lowenthal

Mark David Lowenthal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8723408
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between 2.5 to 7 microns; a plurality of first terminals spaced apart and coupled to the light emitting region peripherally on a first side, each first terminal of the plurality of first terminals having a height between about 0.5 to 2 microns; and one second terminal coupled centrally to a mesa region of the light emitting region on the first side, the second terminal having a height between 1 to 8 microns.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 13, 2014
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw
  • Publication number: 20140054515
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, an exemplary metallic nanowire ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanowires at least partially coated with a first polymer comprising polyvinyl pyrrolidone having a molecular weight less than about 50,000; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, and mixtures thereof; and a second polymer or polymeric precursor such as polyvinyl pyrrolidone or a polyimide, having a molecular weight greater than about 500,000.
    Type: Application
    Filed: November 5, 2013
    Publication date: February 27, 2014
    Inventors: Mark David Lowenthal, Mark Lewandowski, Jeffrey Baldridge, Lixin Zheng, David Michael Chesler
  • Publication number: 20140050920
    Abstract: A representative embodiment includes a graphene-based fiber comprising: a starting strand; and a plurality of coatings of aligned graphene comprising: a first coating of aligned graphene axially offset at a first angle from an axis of the starting strand; a second coating of aligned graphene over the first coating and axially offset at a second angle from the axis of the starting strand; and at least one next coating of aligned graphene over a preceding coating and axially offset at a next angle from the axis of the starting strand. Another embodiment includes a plurality of intertwined and twisted graphene-based fibers. In various embodiments, the graphene may be graphene ribbons or carbon nanotubes or both. The graphene ribbon includes a plurality of aligned and overlapping graphene flakes in a polymer. Methods of fabrication are also disclosed.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Inventors: William Johnstone Ray, Mark David Lowenthal
  • Publication number: 20140051242
    Abstract: A representative printable composition comprises a liquid or gel suspension of a plurality of metallic particles; a plurality of semiconductor particles; and a first solvent. The pluralities of particles may also be comprised of an alloy of a metal and a semiconductor. The composition may further comprise a second solvent different from the first solvent. In a representative embodiment, the first solvent comprises a polyol or mixtures thereof, such as glycerin, and the second solvent comprises a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the metallic particles and the semiconductor particles are nanoparticles between about 5 nm to about 1.5 microns in any dimension. A representative metallic and semiconductor particle ink can be printed and annealed to produce a conductor.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Tricia Youngbull, Theodore I. Kamins
  • Publication number: 20140048749
    Abstract: A representative printable composition comprises a liquid or gel suspension of a plurality of conductive particles; a first solvent comprising a polyol or mixtures thereof, such as glycerin, and a second solvent comprising a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. In various embodiments, the conductive particles are comprised of a metal, a semiconductor, an alloy of a metal and a semiconductor, or mixtures thereof, and may have sizes between about 5 nm to about 1.5 microns in any dimension. A representative conductive particle ink can be printed and annealed to produce a conductor.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Tricia Youngbull, Theodore I. Kamins
  • Publication number: 20140051237
    Abstract: A representative printable composition comprises a liquid or gel suspension of a plurality of substantially spherical semiconductor particles; and a first solvent comprising a polyol or mixtures thereof, such as glycerin; and a second solvent different from the first solvent, the second solvent comprising a carboxylic or dicarboxylic acid or mixtures thereof, such as glutaric acid. The composition may further comprise a third solvent such as tetramethylurea, butanol, or isopropanol. In various embodiments, the plurality of substantially spherical semiconductor particles have a size in any dimension between about 5 nm and about 100?. A representative composition can be printed and utilized to produce diodes, such as photovoltaic diodes or light emitting diodes.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Tricia Youngbull, Theodore I. Kamins
  • Publication number: 20140017557
    Abstract: Representative embodiments provide a composition for printing a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative composition comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer or polymeric precursor. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Application
    Filed: August 9, 2012
    Publication date: January 16, 2014
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Publication number: 20140017558
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a capacitor. A representative liquid or gel separator comprises a plurality of particles selected from the group consisting of: diatoms, diatomaceous frustules, diatomaceous fragments, diatomaceous remains, and mixtures thereof; a first, ionic liquid electrolyte; and a polymer or, in the printable composition, a polymer or a polymeric precursor. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.
    Type: Application
    Filed: August 9, 2012
    Publication date: January 16, 2014
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 8454859
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 4, 2013
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, Jeffrey Baldridge, Mark Lewandowski, Lixin Zheng, David Michael Chesler
  • Publication number: 20120321864
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Mark David Lowenthal, Jeffrey Baldridge, Mark Allan Lewandowski, Lixin Zheng, David Michael Chesler
  • Publication number: 20120248976
    Abstract: The various embodiments of the invention provide an addressable or a static emissive display comprising a plurality of layers, including a first substrate layer, wherein each succeeding layer is formed by printing or coating the layer over preceding layers. Exemplary substrates include paper, plastic, rubber, fabric, glass, ceramic, or any other insulator or semiconductor. In an exemplary embodiment, the display includes a first conductive layer attached to the substrate and forming a first plurality of conductors; various dielectric layers; an emissive layer; a second, transmissive conductive layer forming a second plurality of conductors; a third conductive layer included in the second plurality of conductors and having a comparatively lower impedance; and optional color and masking layers.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 4, 2012
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Timothy Charles Claypole
  • Publication number: 20120252302
    Abstract: The various embodiments of the invention provide an addressable or a static emissive display comprising a plurality of layers, including a first substrate layer, wherein each succeeding layer is formed by printing or coating the layer over preceding layers. Exemplary substrates include paper, plastic, rubber, fabric, glass, ceramic, or any other insulator or semiconductor. In an exemplary embodiment, the display includes a first conductive layer attached to the substrate and forming a first plurality of conductors; various dielectric layers; an emissive layer; a second, transmissive conductive layer forming a second plurality of conductors; a third conductive layer included in the second plurality of conductors and having a comparatively lower impedance; and optional color and masking layers.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 4, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Timothy Charles Claypole
  • Publication number: 20120217453
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 30, 2012
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Mark David Lowenthal, Jeffrey Baldridge, Mark Allan Lewandowski, Lixin Zheng, David Michael Chesler
  • Publication number: 20120178194
    Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
    Type: Application
    Filed: February 4, 2012
    Publication date: July 12, 2012
    Applicants: National Aeronautics and Space Administration (NASA), NthDegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Publication number: 20120178195
    Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
    Type: Application
    Filed: February 4, 2012
    Publication date: July 12, 2012
    Applicants: National Aeronautics and Space Administration (NASA), NthDegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Publication number: 20120161338
    Abstract: An exemplary printable composition of a liquid or gel suspension of two-terminal integrated circuits comprises: a plurality of two-terminal integrated circuits, each two-terminal integrated circuit of the plurality of two-terminal integrated circuits less than about 75 microns in any dimension; a first solvent; a second solvent different from the first solvent; and a viscosity modifier; wherein the composition has a viscosity substantially about 50 cps to about 25,000 cps at about 25° C.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120164797
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of fabricating an electronic device comprises: depositing one or more first conductors; and depositing a plurality of diodes suspended in a mixture of a first solvent and a viscosity modifier. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120161196
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus comprises: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120161195
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. In other exemplary embodiments a second solvent is also included, and the composition has a viscosity substantially between about 100 cps and about 25,000 cps at about 25° C. In an exemplary embodiment, a composition comprises: a plurality of diodes or other two-terminal integrated circuits; one or more solvents comprising about 15% to 99.9% of any of N-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, N-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier comprising about 0.10% to 2.5% methoxy propyl methylcellulose resin or hydroxy propyl methylcellulose resin or mixtures thereof; and about 0.01% to 2.5% of a plurality of substantially optically transparent and chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120164796
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello