Patents by Inventor Mark H. McAdon

Mark H. McAdon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9856227
    Abstract: A method for the production of ethylene oxide wherein the partial pressure of water vapor at the inlet of the reactor is at least about 8 kPa using a high purity carrier comprising alpha-alumina, a promoting amount of at least one Group IA metal, and a promoting amount of rhenium.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: January 2, 2018
    Assignee: Dow Technology Investments LLC
    Inventors: Liping Zhang, Mark H. McAdon, Ernest R. Frank
  • Publication number: 20170158654
    Abstract: A method for the production of ethylene oxide wherein the partial pressure of water vapor at the inlet of the reactor is at least about 8 kPa using a high purity carrier comprising alpha-alumina, a promoting amount of at least one Group IA metal, and a promoting amount of rhenium.
    Type: Application
    Filed: January 19, 2017
    Publication date: June 8, 2017
    Inventors: Liping Zhang, Mark H. McAdon, Ernest R. Frank
  • Patent number: 9649621
    Abstract: Methods of preparing a second high-efficiency, rhenium-promoted silver catalyst for producing alkylene oxide from an alkylene based on a first catalyst are disclosed and described. In accordance with the disclosed methods, the first and second catalysts include at least one promoter that includes a rhenium promoter. The target catalyst concentrations of one or more promoters of the at least one promoter on the second catalyst are determined based on the values of a catalyst reference property for the two catalysts and the concentration of the one or more promoters of the at least one promoter on the first catalyst. Suitable catalyst reference properties include carrier specific surface area and silver specific surface area. Reaction systems utilizing the first and second catalysts are also described.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 16, 2017
    Assignee: Dow Technology Investments LLC
    Inventors: Hirokazu Shibata, Arun G. Basrur, Srikant Gopal, Mark H. McAdon, Albert Cheng-Yu Liu, Liping Zhang, Ernest R. Frank
  • Patent number: 9573916
    Abstract: A method for the production of ethylene oxide wherein the partial pressure of water vapor at the inlet of the reactor is at least about 8 kPa using a high purity carrier comprising alpha-alumina, a promoting amount of at least one Group IA metal, and a promoting amount of rhenium.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: February 21, 2017
    Assignee: Dow Technology Investments LLC
    Inventors: Liping Zhang, Mark H. McAdon, Ernest R. Frank
  • Publication number: 20170015609
    Abstract: A catalyst support for manufacturing a mixture of alcohols from synthesis gas comprises a combination of nickel, molybdenum, at least one metal selected from the group consisting of palladium, ruthenium, chromium, gold, zirconium, and aluminum, and at least one of an alkali metal or alkaline earth series metal as a promoter. The catalyst may be used in a process for converting synthesis gas wherein the primary product is a mixture of ethanol (EtOH), propanol (PrOH), and butanol (BuOH), optionally in conjunction with higher alcohols.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Dean M. Millar, Mark H. McAdon, Robert J. Gulotty, JR., David G. Barton, Daniela Ferrari, Billy Brian Bardin, Yu Liu
  • Patent number: 9415375
    Abstract: Catalyst compositions for producing mixed alcohols from a synthesis gas feed. The catalyst composition comprises a catalytic metal combination on a catalyst support, a first optional promoter and a second optional promoter, where the catalytic metal combination consists essentially of iridium, vanadium, and molybdenum.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 16, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Daniela Ferrari, Neelesh J. Rane, Adam Chojecki, Gerolamo Budroni, David G. Barton, Mark H. McAdon, Robert J. Gulotty, Jr., Dean M. Millar, Palanichamy Manikandan
  • Publication number: 20160016924
    Abstract: A method for the production of ethylene oxide wherein the partial pressure of water vapor at the inlet of the reactor is at least about 8 kPa using a high purity carrier comprising alpha-alumina, a promoting amount of at least one Group IA metal, and a promoting amount of rhenium.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 21, 2016
    Inventors: Liping Zhang, Mark H. McAdon, Ernest R. Frank
  • Patent number: 8969498
    Abstract: The invention generally relates to a method of inhibiting polymerization of vinyl aryl monomers, a process for increasing number average molecular weight of a polystyrene, and to an inhibitor composition useful therein.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: March 3, 2015
    Assignees: Dow Global Technologies LLC, Carnegie Mellon University
    Inventors: Nathan T. Kendall, Kishore K. Kar, Mark H. McAdon, Krzysztof Matyjaszewski, Laura Mueller, Charles D. Dukes
  • Publication number: 20140323295
    Abstract: Methods of preparing a second high-efficiency, rhenium-promoted silver catalyst for producing alkylene oxide from an alkylene based on a first catalyst are disclosed and described. In accordance with the disclosed methods, the first and second catalysts include at least one promoter that includes a rhenium promoter. The target catalyst concentrations of one or more promoters of the at least one promoter on the second catalyst are determined based on the values of a catalyst reference property for the two catalysts and the concentration of the one or more promoters of the at least one promoter on the first catalyst. Suitable catalyst reference properties include carrier specific surface area and silver specific surface area. Reaction systems utilizing the first and second catalysts are also described.
    Type: Application
    Filed: November 30, 2012
    Publication date: October 30, 2014
    Inventors: Hirokazu Shibata, Arun G. Basrur, Srikant Gopal, Mark H. McAdon, Albert Cheng-Yu Liu, Liping Zhang, Ernest R. Frank
  • Publication number: 20140018453
    Abstract: A catalyst for manufacturing a mixture of alcohols from synthesis gas comprises a combination of nickel, molybdenum, at least one metal selected from the group consisting of palladium, ruthenium, chromium, gold, zirconium, and aluminium, and at least one of an alkali metal or alkaline earth series metal as a promoter. The catalyst may be used in a process for converting synthesis gas wherein the primary product is a mixture of ethanol (EtOH), propanol (PrOH), and butanol (BuOH), optionally in conjunction with higher alcohols.
    Type: Application
    Filed: April 1, 2011
    Publication date: January 16, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Dean M Millar, Mark H. McAdon, Robert J. Gulotty, Jr., David G. Barton, Daniela Ferrari, Billy B. Bardin, Yu Liu
  • Publication number: 20140018452
    Abstract: A catalyst suitable for manufacturing a mixture of alcohols from synthesis gas comprises a combination of nickel, two or more metals selected from ruthenium, palladium, gold, chromium, aluminum and tin, and at least one of an alkali metal or alkaline earth series metal as a promoter. The catalyst may be used in a process for converting synthesis gas wherein the primary product is a mixture of ethanol (EtOH), propanol (PrOH), and butanol (BuOH), optionally in conjunction with higher alcohols.
    Type: Application
    Filed: April 1, 2011
    Publication date: January 16, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Dean Millar, Mark H. McAdon, Robert J. Gulotty,, JR., David G. Barton, Daniela Ferrari, Billy B. Bardin, Yu Liu
  • Publication number: 20130158203
    Abstract: The invention generally relates to a method of inhibiting polymerization of vinyl aryl monomers, a process for increasing number average molecular weight of a polystyrene, and to an inhibitor composition useful therein.
    Type: Application
    Filed: July 27, 2011
    Publication date: June 20, 2013
    Applicants: CARNEGIE MELLON UNIVERSITY, DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Nathan T. Kendall, Kishore K. Kar, Mark H. McAdon, Krzysztof Matyjaszewski, Laura Mueller, Charles D. Dukes
  • Publication number: 20130029841
    Abstract: Catalyst compositions for producing mixed alcohols from a synthesis gas feed. The catalyst composition comprises a catalytic metal combination on a catalyst support, a first optional promoter and a second optional promoter, where the catalytic metal combination consists essentially of iridium, vanadium, and molybdenum.
    Type: Application
    Filed: March 30, 2011
    Publication date: January 31, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Daniela Ferrari, Neelesh J. Rane, Adam Chojecki, Gerolamo Budroni, David G. Barton, Mark H. McAdon, Robert J. Gulotty, JR., Dean M. Millar, Palanichamy Manikandan
  • Publication number: 20120208695
    Abstract: A supported catalyst composition suitable for use in converting synthesis gas to alcohols comprises a catalytic metal, a catalyst promoter and a catalyst support.
    Type: Application
    Filed: November 2, 2010
    Publication date: August 16, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Billy B. Bardin, David G. Barton, Adam Chojecki, Howard W. Clark, Daniela Ferrari, Robert J. Gulotty, JR., Yu Liu, Mark H. McAdon, Dean M. Millar, Neelesh Rane, Hendrik E. Tuinstra
  • Patent number: 6635597
    Abstract: A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising a neutral (Lewis acid) or charge separated (cation/anion pair) comprising a boron ligand containing a fluorinated organic group containing from 10 to 1000 non-hydrogen atoms.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: October 21, 2003
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Liting Li, You-Xian Chen, Mark H. McAdon, Peter N. Nickias
  • Patent number: 6268445
    Abstract: A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: July 31, 2001
    Assignees: The Dow Chemical Company, Northwestern University
    Inventors: Mark H. McAdon, Peter N. Nickias, Tobin J. Marks, David J. Schwartz
  • Patent number: 6191245
    Abstract: The present invention relates to &agr;-olefin/vinyl aromatic monomer interpolymers with characteristic signals in their carbon 13 NMR spectra. In particular, ethylene/styrene copolymers of the present invention have peaks in the carbon 13 NMR spectra which appear in the chemical shift range 43.70-44.25 ppm, preferably from 43.75-44.25 ppm and 38.0-38.5 ppm, said peaks being at least three times the peak to peak noise. The interpolymers are prepared by polymerizing the appropriate mixture of monomers in the presence of a catalyst such as racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl)) zirconium dichloride. The polymers of the present invention posses increased modulus as determined from both tensile stress/strain and dynamic mechanical data at comparable vinyl aromatic monomer levels.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: February 20, 2001
    Assignee: The Dow Chemical Company
    Inventors: Richard E. Campbell, Jr., Mark H. McAdon, Peter N. Nickias, Jasson T. Patton, Oscar D. Redwine, Francis J. Timmers
  • Patent number: 6034022
    Abstract: Group 4 metal constrained geometry complexes comprising a fused ring indenyl derivative ligand, catalytic derivatives thereof, processes for preparing the same and their use as components of olefin polymerization catalysts are disclosed.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: March 7, 2000
    Assignee: The Dow Chemical Company
    Inventors: Mark H. McAdon, Jasson T. Patton, Peter N. Nickias, Ravi B. Shankar, Francis J. Timmers, Brian W. S. Kolthammer, Daniel D. VanderLende, Steven M. Ueligger
  • Patent number: 6015868
    Abstract: Group 4 metal complexes comprising an indenyl group substituted in the 2 or 3 position with at least one group selected from hydrocarbyl, fluoro-substituted hydrocarbyl, hydrocarbyloxy-substituted hydrocarbyl, dialkylamino-substituted hydroacrbyl, silyl, germyl and mixtures thereof, said indenyl group further being covalently bonded to the metal by means of a divalent ligand group, catalytic derivatives thereof and their use as olefin polymerization catalysts are disclosed.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: January 18, 2000
    Assignee: The Dow Chemical Company
    Inventors: Peter N. Nickias, Mark H. McAdon, Jasson T. Patton, Bernard P. Friedrichsen, Jorge Soto, James C. Stevens, Daniel D. VanderLende
  • Patent number: 5965756
    Abstract: Group 4 metal constrained geometry complexes comprising a fused ring indenyl derivative ligand, catalytic derivatives thereof, processes for preparing the same and their use as components of olefin polymerization catalysts are disclosed.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: October 12, 1999
    Assignee: The Dow Chemical Company
    Inventors: Mark H. McAdon, Jasson T. Patton, Peter N. Nickias, Ravi B. Shankar, Francis J. Timmers, Brian W. Kolthammer, Daniel D. VanderLende, Steven M. Ueligger