Patents by Inventor Mark Hampden-Smith

Mark Hampden-Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080093422
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: April 24, 2008
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20080093423
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: April 24, 2008
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20080043085
    Abstract: The invention relates to reflective and non-reflective features formed from multiple inks. In one embodiment, the printed feature comprises a substrate having a first region and a second region, the first and second regions having different surface characteristics; a first printed element disposed on the first region; and a second printed element disposed on the second region, wherein the first printed element is more adherent than the second printed element to the first region. In another embodiment, the printed feature comprises multiple layers formed from different inks exhibiting enhanced durability. The invention is also to processes for forming these features, preferably through a direct write printing process.
    Type: Application
    Filed: May 31, 2007
    Publication date: February 21, 2008
    Applicant: Cabot Corporation
    Inventors: Richard Einhorn, Mark Hampden-Smith, Scott Haubrich, Rimple Bhatia
  • Publication number: 20080034921
    Abstract: Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
    Type: Application
    Filed: May 30, 2007
    Publication date: February 14, 2008
    Applicant: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron Stump, Allen Schult, Mark Hampden-Smith, Chuck Edwards, Anthony James, James Caruso, Toivo Kodas, Scott Haubrich, Mark Kowalski, Nathan Stott
  • Publication number: 20070290384
    Abstract: In one aspect, the present invention relates to a method of making multi-phase particles that include nanoparticulates and matrix, which maintains the nanoparticulates in a dispersed state. A flowing gas dispersion is generated that includes droplets of a precursor medium dispersed in a gas phase. The precursor medium contains liquid vehicle and at least a first precursor to a first material and a second precursor to a second material. The multi-phase particles are formed from the gas dispersion by removing at least a portion of the liquid vehicle from the droplets of precursor medium. The nanoparticulates in the multi-phase particles include the first material and the matrix in the multi-phase particles includes the second material.
    Type: Application
    Filed: August 8, 2005
    Publication date: December 20, 2007
    Applicant: CABOT CORPORATION
    Inventors: Toivo Kodas, Mark Hampden-Smith, Klaus Kunze, David Dericotte, Karel Vanheusden, Aaron Stump
  • Publication number: 20070275260
    Abstract: Provided are palladium-containing powders and a method and apparatus for manufacturing the palladium-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications. Powders may have high resistance to oxidation of palladium. Multi-phase particles are provided including a palladium-containing metallic phase and a second phase that is dielectric. Electronic components are provided manufacturable using the powders.
    Type: Application
    Filed: February 6, 2007
    Publication date: November 29, 2007
    Inventors: Mark Hampden-Smith, Toivo Kodas, Quint Powell, Daniel Skamser, James Caruso, Clive Chandler
  • Publication number: 20070256517
    Abstract: Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed (102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
    Type: Application
    Filed: February 19, 2007
    Publication date: November 8, 2007
    Applicant: CABOT CORPORATION
    Inventors: Mark Hampden-Smith, Toivo Kodas, Quint Powell, Daniel Skamser, James Caruso, Clive Chandler
  • Publication number: 20070257388
    Abstract: Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed (102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
    Type: Application
    Filed: February 19, 2007
    Publication date: November 8, 2007
    Applicant: CABOT CORPORATION
    Inventors: Mark Hampden-Smith, Toivo Kodas, Quint Powell, Daniel Skamser, James Caruso, Clive Chandler
  • Publication number: 20070221887
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: September 27, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070204724
    Abstract: Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed(102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
    Type: Application
    Filed: October 31, 2006
    Publication date: September 6, 2007
    Inventors: Mark Hampden-Smith, Toivo Kodas, Quint Powell, Daniel Skamser, James Caruso, Clive Chandler
  • Publication number: 20070207565
    Abstract: Processes for forming photovoltaic features and in particular photovoltaic conductive features. In one aspect, the process comprises printing a primer material onto a substrate; etching the substrate with the primer material to form an etched substrate; printing a precursor composition onto the etched substrate, wherein the precursor composition comprises at least one of metallic nanoparticles comprising a metal or a metal precursor compound to the metal; and heating the precursor composition to form the photovoltaic feature on the substrate.
    Type: Application
    Filed: May 9, 2007
    Publication date: September 6, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070190298
    Abstract: This invention is directed to security features that are formed, created, printed from inks comprising metallic particles and/or metallic nanoparticles. Preferably, the security feature is a reflective security features that comprises metallic nanoparticles where the reflective security features are formed by a direct-writing process, e.g., an ink jet printing process, using an ink comprising metallic nanoparticles. The invention is also directed to the use of these security features in many applications and to processes for making them.
    Type: Application
    Filed: January 13, 2006
    Publication date: August 16, 2007
    Applicant: Cabot Corporation
    Inventors: Mark Hampden-Smith, Richard Einhorn, Scott Haubrich, Ned Hardman, Jainisha Shah, Rimple Bhatia, Ralph Kornbrekke
  • Publication number: 20070181844
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: April 18, 2007
    Publication date: August 9, 2007
    Applicant: CABOT CORPORATION
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070178163
    Abstract: In one aspect, the present invention relates to a method of making multi-phase particles that include nanoparticulates and matrix, which maintains the nanoparticulates in a dispersed state. A flowing gas dispersion is generated that includes droplets of a precursor medium dispersed in a gas phase. The precursor medium contains liquid vehicle and at least a first precursor to a first material and a second precursor to a second material. The multi-phase particles are formed from the gas dispersion by removing at least a portion of the liquid vehicle from the droplets of precursor medium. The nanoparticulates in the multi-phase particles include the first material and the matrix in the multi-phase particles includes the second material.
    Type: Application
    Filed: August 8, 2005
    Publication date: August 2, 2007
    Applicant: CABOT CORPORATION
    Inventors: Toivo Kodas, Mark Hampden-Smith, Klaus Kunze, David Dericotte, Karel Vanheusden, Aaron Stump
  • Publication number: 20070178232
    Abstract: Precursor compositions in the form of a tape that can be transferred to a substrate and converted to an electronic feature at a relatively low temperature, such as not greater than about 200° C. The tape composition can be disposed on a carrier to form a ribbon structure that is flexible and can be handled in a variety of industrial processes.
    Type: Application
    Filed: December 21, 2006
    Publication date: August 2, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070160899
    Abstract: Composite particles comprising inorganic nanoparticles disposed on a substrate particle and processes for making and using same. A flowing aerosol is generated that includes droplets of a precursor medium dispersed in a gas phase. The precursor medium contains a liquid vehicle and at least one precursor. At least a portion of the liquid vehicle is removed from the droplets of precursor medium under conditions effective to convert the precursor to the nanoparticles on the substrate and form the composite particles.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 12, 2007
    Applicant: Cabot Corporation
    Inventors: Paolina Atanassova, Rimple Bhatia, Yipeng Sun, Mark Hampden-Smith, James Brewster, Paul Napolitano
  • Publication number: 20070138438
    Abstract: Photoluminescent phosphor powders and a method for making phosphor powders. The phosphor powders have a small particle size, narrow particle size distribution and are substantially spherical. The method of the invention advantageously permits the economic production of such powders. The invention also relates to improved devices, such as display devices and lighting elements, incorporating the phosphor powders.
    Type: Application
    Filed: February 21, 2007
    Publication date: June 21, 2007
    Applicant: CABOT CORPORATION
    Inventors: Mark Hampden-Smith, Toivo Kodas, James Caruso, Quint Powell, Klaus Kunze, Daniel Skamser
  • Publication number: 20070125989
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 7, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070122932
    Abstract: Precursor compositions having a low conversion temperature and methods for the fabrication of recessed electrical features from the precursor compositions. The electrical features can be conductors, resistors and dielectric features. The precursor compositions are deposited into recessed features, such as trenches, formed in a substrate and are reacted at a low temperature to form electrical features having good electrical and mechanical properties. The substrate can be a low temperature substrate, such as an organic substrate.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 31, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20070120097
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 31, 2007
    Applicant: Cabot Corporation
    Inventors: Toivo Kodas, Mark Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron Stump, Allen Schult, Paolina Atanassova, Klaus Kunze