Patents by Inventor Mark Missey

Mark Missey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060023992
    Abstract: A method of in-wafer testing is provided for a monolithic photonic integrated circuit (PIC) formed in a semiconductor wafer where each such in-wafer circuit comprises two or more integrated electro-optic components, one of each in tandem forming a signal channel in the circuit. The method includes the provision of a first integrated photodetector at a rear end of each signal channel and a second integrated photodetector at forward end of each signal channel. Then, the testing is accomplished, first, by sequentially operating a first of a selected channel electro-optic component in a selected circuit to monitor light output from a channel via its first corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide first calibration data.
    Type: Application
    Filed: October 3, 2005
    Publication date: February 2, 2006
    Applicant: Infinera Corporation
    Inventors: Fred Kish, Charles Joyner, Mark Missey, Frank Peters, Radhakrishnan Nagarajan, Richard Schneider
  • Publication number: 20050213883
    Abstract: A method is disclosed for optimizing optical channel signal demultiplexing in a monolithic receiver photonic integrated circuit (RXPIC) chip by providing an integrated channel signal demultiplexing with multiple waveguide input verniers provided to an WDM signal demultiplexer. The RxPIC chip may optionally include an integrated amplifier in at least some of the waveguide input verniers. The RxPIC chip may be comprised of, in monolithic form, a plurality of optional semiconductor optical amplifiers (SOAs) at the input of the chip to receive a WDM signal from an optical link which is provided along a plurality of waveguide input verniers to an integrated optical demultiplexer, such as, but not limited to, an arrayed waveguide grating (AWG), as a WDM signal demultiplexer. Thus, optical outputs from the respective semiconductor laser amplifiers are provided as vernier inputs to the optical demultiplexer forming a plurality of input verniers at the input to the optical demultiplexer.
    Type: Application
    Filed: May 24, 2005
    Publication date: September 29, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner
  • Publication number: 20050207696
    Abstract: An optical-to-electrical-to-optical converter comprises a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip comprising an optical waveguide formed in the chip from a chip input to receive a first multiplexed channel signal from an optical link and provide them to an arrayed waveguide grating (AWG) which demultiplexes the multiplexed channel signals and provides a plurality of electrical channel signals to an electronic regenerator. The regenerator regenerates the electrical channel signals to an original signal waveform and provides the reformed electrical signals to a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip having an array of modulated sources formed in the chip that are coupled as inputs to an arrayed waveguide grating (AWG). The TxPIC modulates the reformed electrical signals to form a plurality of optical channel sign which are combined to form a second first multiplexed channel signal for transmission on an optical link.
    Type: Application
    Filed: May 5, 2005
    Publication date: September 22, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050201669
    Abstract: An optical transport network comprises a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip and a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip.
    Type: Application
    Filed: May 5, 2005
    Publication date: September 15, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050135730
    Abstract: A method is disclosed for monitoring and controlling the bit error rate (BER) in an optical communication network where an optical receiver in the optical transmission network is a monolithic photonic integrated circuit (RxPIC) chip. The method includes the steps of decombining on-chip a combined channel signal received from the network and then monitoring a real time bit error rate (BER) of a decombined channel signal. The determined BER is then communicated, such as through an optical service channel (OSC) to an optical transmitter source that is the source of origin of the channel signal. Based upon the determined BER, the chirp of a channel signal modulator at the optical transmitter source that generated the monitored channel signal is adjusted by, for example, adjusting its bias. The same channel signal received at the RxPIC chip can be monitored again to determine if an acceptable level for the BER has been achieved by the previous chirp adjustment.
    Type: Application
    Filed: January 7, 2005
    Publication date: June 23, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050135729
    Abstract: An optical receiver photonic integrated circuit (RxPIC) comprises a semiconductor monolithic chip having an input to receive from an optical transmission link a combined channel signal originating from an optical transmitter source and comprising a plurality of channel signals having different wavelengths forming a wavelength grid. An optical decombiner is integrated in the chip and optically coupled to the input to receive the multiplexed channel signal and provide a decombined individual channel signal on an output waveguide of a plurality of such output waveguides provided from the optical decombiner. A plurality of photodetectors are also integrated in the chip and each photodetector is optically coupled to one of the output waveguides to receive a decombined channel signal and convert the channel signal to an electrical signal.
    Type: Application
    Filed: January 6, 2005
    Publication date: June 23, 2005
    Inventors: David Welch, Radhakrishnan Nagarajan, Fred Kish, Mark Missey, Vincent Dominic, Atul Mathur, Frank Peters, Charles Joyner, Richard Schneider, Ting-Kuang Chiang
  • Publication number: 20050117834
    Abstract: A photonic integrated circuit (PIC) comprises a plurality of integrated optically coupled components formed in a surface of the PIC and a passivating layer overlies at least a portion of the PIC surface. The overlying passivating layer comprises a material selected from the group consisting of BCB, ZnS and ZnSe. Also, when the circuits are PIC chips are die in the semiconductor wafer, a plurality of linear cleave streets are formed in a wafer passivation layer where a pattern of the cleave streets define separate PIC chips in the wafer for their subsequent singulation from the wafer.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 2, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Fred Kish
  • Publication number: 20050111779
    Abstract: Disclosed is a method of in-wafer testing of integrated optical components and in-wafer chips with photonic integrated circuits (PICs).
    Type: Application
    Filed: December 16, 2004
    Publication date: May 26, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Frank Peters, Mehrdad Ziari, Fred Kish
  • Publication number: 20050111780
    Abstract: A method for reducing insertion loss in a transition region between a plurality of input or output waveguides to a free space coupler region in a photonic integrated circuit (PIC) includes the steps of forming a passivation layer over the waveguides and region and forming the passivation overlayer such that it monotonically increases in thickness through the transition region to the free space coupler region.
    Type: Application
    Filed: December 21, 2004
    Publication date: May 26, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Fred Kish
  • Publication number: 20050100278
    Abstract: An arrayed waveguide grating (AWG) comprises at least two free space regions, a plurality of grating arms extending between the two space regions, a passivation layer formed over the arrayed waveguide grating and a plurality of inputs at least to one of the free space regions to receive a plurality of channel signals separated by a predetermined channel spacing. A depth of the passivation layer chosen by providing a TE to TM wavelength shift between TE and TM modes propagating through the arrayed waveguide grating being approximately less than or equal to 20% of a magnitude of the channel spacing.
    Type: Application
    Filed: December 17, 2004
    Publication date: May 12, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Fred Kish
  • Publication number: 20050100279
    Abstract: An optical waveguide device, power coupler, a star coupler, a MMI coupler, an arrayed waveguide grating (AWG) or an Echelle grating, having at least one free space region with a plurality of optical waveguides coupled as inputs and separated by channels having a angled bottom portion, the channels monotonically decreasing in size or shape in a direction toward the free space region and optically coupling with adjacent waveguides at the interface region between the optical waveguides and the free space region so that insertion loss at the interface region is substantially reduced.
    Type: Application
    Filed: December 21, 2004
    Publication date: May 12, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Fred Kish
  • Publication number: 20050100300
    Abstract: A method for forming and apparatus comprising a free space coupler region having a plurality of optical waveguides coupled to the space coupler region at an interface region, the waveguides converging with one another to the interface region, and a trench formed between adjacent waveguides, the depth of the trench or trenches extending from an outer point to the interface region and monotonically decreasing in depth from the outer point to the interface region.
    Type: Application
    Filed: December 21, 2004
    Publication date: May 12, 2005
    Applicant: Infinera Corporation
    Inventors: Charles Joyner, Mark Missey, Radhakrishnan Nagarajan, Frank Peters, Mehrdad Ziari, Fred Kish
  • Publication number: 20050094925
    Abstract: A method of in-wafer testing is provided for a monolithic photonic integrated circuit (PIC) formed in a semiconductor wafer where each such in-wafer circuit comprises two or more integrated electro-optic components, one of each in tandem forming a signal channel in the circuit. The method includes the provision of a first integrated photodetector at a rear end of each signal channel and a second integrated photodetector at forward end of each signal channel. Then, the testing is accomplished, first, by sequentially operating a first of a selected channel electro-optic component in a selected circuit to monitor light output from a channel via its first corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide first calibration data.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 5, 2005
    Applicant: Infinera Corporation
    Inventors: Fred Kish, Mark Missey, Radhakrishnan Nagarajan, Frank Peters, Richard Schneider, Charles Joyner
  • Publication number: 20050025409
    Abstract: A photonic integrated circuit (PIC) chip with a plurality of electro-optic components formed on a major surface of the chip and a submount that includes a substrate that extends over the major surface of the chip forming an air gap between the substrate and the major surface, the substrate to support electrical leads for electrical connection to some of the electro-optic components on the chip major surface.
    Type: Application
    Filed: May 25, 2004
    Publication date: February 3, 2005
    Applicant: Infinera Corporation
    Inventors: David Welch, Vincent Dominic, Fred Kish, Mark Missey, Radhakrishnan Nagarajan, Atul Mathur, Frank Peters, Robert Taylor, Matthew Mitchell, Alan Nilsson, Stephen Grubb, Richard Schneider, Charles Joyner, Jonas Webjorn, Ting-Kuang Chiang, Robert Grencavich, Vinh Nguyen, Donald Pavinski, Marco Sosa
  • Patent number: 6760499
    Abstract: A planar waveguide Mach-Zehnder interferometer (MZ) has improved performance as a variable optical attenuator as well as a thermo-optic switch (TOS) with reduced polarization dependent loss (PDL) in high attenuation states. The PDL was reduced by correcting for the increased birefringence that occurs on heating one waveguide arm by making the two waveguides inherently asymmetric, such that when one of the waveguides is heated, the differential birefringence of the two arms becomes zero. This asymmetry can be realized simply by changing the width of one of the waveguides. The modified device allows for very small PDL in the high attenuation state of a VOA and for theoretically perfect contrast in a TOS in the off state, with only a small penalty in PDL of the on state.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: July 6, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Bardia Pezeshki, Mark Missey, Anca L. Sala, Craig D. Liddle, Barthelemy Fondeur
  • Patent number: 6754243
    Abstract: A wavelength tunable laser includes a distributed feedback (DFB) array with first and second DFB laser diodes that generate first and second beams of light in first and second wavelength ranges. A microelectromechanical (MEMS) optical element selectively couples one of the first and second beams of light from the DFB laser array into an optical waveguide. The MEMS optical element includes a collimating lens and a thermal or electrostatic MEMS actuator for moving the collimating lens to select the one of the first and second beams of light. A focusing lens is located between the collimating lens and the optical waveguide. Alternately, the MEMS optical element includes a fixed collimating lens that collimates the first and second beams of light, a mirror, and a MEMS actuator for tilting the mirror to select the one of the first and second beams of light.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: June 22, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Mark Missey, Bardia Pezeshki, Robert J. Lang
  • Patent number: 6728442
    Abstract: A method for designing an arrayed waveguide grating that includes input and output couplers, input and output slabs, and a plurality of arms connecting the input and output slabs includes steps of determining a desired amplitude response for the arrayed waveguide grating. A desired dispersion response for the arrayed waveguide grating is determined. Input and output couplers are designed to produce the desired amplitude response. The lengths of the arms of the arrayed waveguide grating are perturbed to produce a flat or linear dispersion. In addition, the polarity of a group delay, dispersion and dispersion slope response of an arrayed waveguide grating can also be changed by adjusting Individual lengths of the waveguide arms. The group delay, dispersion and dispersion slope of a multiplexer and a demultiplexer can be matched to substantially cancel.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: April 27, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Mark Missey, Bart Fondeur, Anca Sala
  • Publication number: 20030053231
    Abstract: A microelectromechanical tilt mirror includes a mirror lying in a first plane and a plurality of torsion bars. First and second chevrons are connected to the mirror by the torsion bars. The first and second chevrons are thermal actuators that tilt the mirror in a first direction relative to the first plane. The mirror, the torsion bars and the first and second chevrons are defined in a semiconductor layer. The mirror has a reflective layer formed on one side thereof. The first chevron includes first and second in-plane actuators located at opposite ends of a first out-of-plane actuator. The microelectromechanical mirror includes an orthogonal surface defined in the semiconductor layer. First and second orthogonal torsion bars connect the orthogonal surface to a third edge of the mirror. The microelectromechanical mirror allows tilting in one axis or more than one axis.
    Type: Application
    Filed: September 17, 2001
    Publication date: March 20, 2003
    Inventors: Mark Missey, Bardia Pezeshki
  • Publication number: 20030053078
    Abstract: A microelectromechanical wavelength monitor includes a first wafer that includes a first movable layer. A first chevron is a thermal actuator that is connected to the first movable layer by a first tether. A second chevron is a thermal actuator that is connected to the first movable layer by a second tether. A second wafer is bonded to the first wafer and includes a trench defining a second stationary layer that is flat or curved. The first and second chevrons adjust a distance between the first movable layer and the second stationary layer to vary a resonated wavelength between the first and second stationary layers. The first movable layer includes an antireflective coating formed on an outer surface thereof. The first and second movable layers include a highly reflective coating formed on an inner surface thereof.
    Type: Application
    Filed: September 17, 2001
    Publication date: March 20, 2003
    Inventors: Mark Missey, Bardia Pezeshki
  • Publication number: 20030026518
    Abstract: A planar waveguide Mach-Zehnder interferometer (MZ) has improved performance as a variable optical attenuator as well as a thermo-optic switch (TOS) with reduced polarization dependent loss (PDL) in high attenuation states. The PDL was reduced by correcting for the increased birefringence that occurs on heating one waveguide arm by making the two waveguides inherently asymmetric, such that when one of the waveguides is heated, the differential birefringence of the two arms becomes zero. This asymmetry can be realized simply by changing the width of one of the waveguides. The modified device allows for very small PDL in the high attenuation state of a VOA and for theoretically perfect contrast in a TOS in the off state, with only a small penalty in PDL of the on state.
    Type: Application
    Filed: July 8, 2002
    Publication date: February 6, 2003
    Applicant: JDS Uniphase Corporation
    Inventors: Bardia Pezeshki, Mark Missey, Anca L. Sala, Craig D. Liddle, Barthelemy Fondeur