Patents by Inventor Mark Mondrinos

Mark Mondrinos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946028
    Abstract: The presently disclosed subject matter provides a biomimetic organ model, and methods of its production and use. In one exemplary embodiment, the biomimetic organ model can be a multi-layer model including a at least two microchannels and at least one chamber slab with at least one membrane coated with cells disposed between at least one microchannel and the at least one chamber slab. In another exemplary embodiment, the biomimetic organ disease model can be a five-layer model including a first and second microchannel with a membrane-gel layer-membrane coated or encompassing cells disposed between the microchannels. In certain embodiments, at least one device can be coupled to the biomimetic organ model that delivers an agent to at least one microchannel.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 2, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Mark Mondrinos
  • Patent number: 11814613
    Abstract: The presently disclosed subject matter provides a biomimetic lung disease model, and methods of its production and use. In one exemplary embodiment, the biomimetic lung disease model can include a first and second microchannel with a membrane coated with airway epithelial cells disposed between the microchannels and at least one device coupled to the biomimetic model that delivers an agent to at least one microchannel. In certain embodiments, the agent is cigarette smoke.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: November 14, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Mark Mondrinos, Woo Yul Byun
  • Publication number: 20230151316
    Abstract: The presently disclosed subject matter provides a biomimetic organ model, and methods of its production and use. In one exemplary embodiment, the biomimetic organ model can be a multi-layer model including a at least two microchannels and at least one chamber slab with at least one membrane coated with cells disposed between at least one microchannel and the at least one chamber slab. In another exemplary embodiment, the biomimetic organ disease model can be a five-layer model including a first and second microchannel with a membrane-gel layer-membrane coated or encompassing cells disposed between the microchannels. In certain embodiments, at least one device can be coupled to the biomimetic organ model that delivers an agent to at least one microchannel.
    Type: Application
    Filed: July 26, 2022
    Publication date: May 18, 2023
    Inventors: Dongeun Huh, Mark Mondrinos
  • Patent number: 11453848
    Abstract: The presently disclosed subject matter provides a biomimetic organ model, and methods of its production and use. In one exemplary embodiment, the biomimetic organ model can be a multi-layer model including a at least two microchannels and at least one chamber slab with at least one membrane coated with cells disposed between at least one microchannel and the at least one chamber slab. In another exemplary embodiment, the biomimetic organ disease model can be a five-layer model including a first and second microchannel with a membrane-gel layer-membrane coated or encompassing cells disposed between the microchannels. In certain embodiments, at least one device can be coupled to the biomimetic organ model that delivers an agent to at least one microchannel.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 27, 2022
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Mark Mondrinos
  • Publication number: 20210348095
    Abstract: The presently disclosed subject matter provides an approach to address the needs for microscale control in shaping the spacial geometry and microarchitecture of 3D collagen hydrogels. For example, the disclosed subject matter provides for compositions, methods, and systems employing N-sulfosuccinimidyl-6-(4?-azido-2?-nitro-phenylamino)hexanoate (“sulfo-SANPAH”), to prevent detachment of the hydrogel from the anchoring substrate due to cell-mediated contraction.
    Type: Application
    Filed: April 16, 2021
    Publication date: November 11, 2021
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Dongeun Huh, Mark Mondrinos, Cassidy Blundell, Jeongyun Seo
  • Patent number: 11008546
    Abstract: The presently disclosed subject matter provides an approach to address the needs for microscale control in shaping the spacial geometry and microarchitecture of 3D collagen hydrogels. For example, the disclosed subject matter provides for compositions, methods, and systems employing N-sulfosuccinimidyl-6-(4?-azido-2?-nitro-phenylamino)hexanoate (“sulfo-SANPAH”), to prevent detachment of the hydrogel from the anchoring substrate due to cell-mediated contraction.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 18, 2021
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Dongeun Huh, Mark Mondrinos, Cassidy Blundell, Jeongyun Seo
  • Publication number: 20200190456
    Abstract: The presently disclosed subject matter provides native extracellular matrix-derived membrane inserts for organs-on-chips, multilayer microfluidics microdevices, bioreactors, tissue culture inserts, and two-dimensional and three-dimensional cell culture systems. A microfluidic cell culture is provided that can include at least one membrane including extracellular matrix (ECM) material. The ECM material can be used to construct a perfusable microfluidic system including a plurality of layers of microfabricated cell culture chambers. The microfluidic cell culture can further include a lower layer including a microchannel on which the at least one membrane is placed and an upper layer including another microchannel. The upper layer can be bonded to the lower layer.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 18, 2020
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Dongeun Huh, Mark Mondrinos, Yoon-Suk Yi, Jeongyun Seo
  • Publication number: 20180230415
    Abstract: The presently disclosed subject matter provides a biomimetic organ model, and methods of its production and use. In one exemplary embodiment, the biomimetic organ model can be a multi-layer model including a at least two microchannels and at least one chamber slab with at least one membrane coated with cells disposed between at least one microchannel and the at least one chamber slab. In another exemplary embodiment, the biomimetic organ disease model can be a five-layer model including a first and second microchannel with a membrane-gel layer-membrane coated or encompassing cells disposed between the microchannels. In certain embodiments, at least one device can be coupled to the biomimetic organ model that delivers an agent to at least one microchannel.
    Type: Application
    Filed: July 27, 2016
    Publication date: August 16, 2018
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Dongeun Huh, Mark Mondrinos
  • Publication number: 20180223251
    Abstract: The presently disclosed subject matter provides an approach to address the needs for microscale control in shaping the spatial geometry and microarchitecture of 3D collagen hydrogels. For example, the disclosed subject matter provides for compositions, methods, and systems employing N-sulfosuccinimidyl-6-(4?-azido-2?-nitro-phenylamino)hexanoate (“sulfo-SANPAH”), to prevent detachment of the hydrogel from the anchoring substrate due to cell-mediated contraction.
    Type: Application
    Filed: July 27, 2016
    Publication date: August 9, 2018
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Dongeun Huh, Mark Mondrinos, Cassidy Blundell, Jeongyun Seo
  • Publication number: 20180216058
    Abstract: The presently disclosed subject matter provides a biomimetic lung disease model, and methods of its production and use. In one exemplary embodiment, the biomimetic lung disease model can include a first and second microchannel with a membrane coated with airway epithelial cells disposed between the microchannels and at least one device coupled to the biomimetic model that delivers an agent to at least one microchannel. In certain embodiments, the agent is cigarette smoke.
    Type: Application
    Filed: July 27, 2016
    Publication date: August 2, 2018
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Dongeun Huh, Mark Mondrinos, Woo Yul Byun
  • Patent number: 8048446
    Abstract: Non-woven fibrous scaffolds made by electrospinning from the synthetic biodegradable polymer such as, for example, poly(lactic-co-glycolic acid) (PLGA) and natural proteins, such as, for example, gelatin (denatured collagen) and elastin and a method of making thereof.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: November 1, 2011
    Assignee: Drexel University
    Inventors: Peter I. Lelkes, Mengyan Li, Mark Mondrinos, Frank Ko
  • Publication number: 20060263417
    Abstract: Non-woven fibrous scaffolds made by electrospinning from the synthetic biodegradable polymer such as, for example, poly(lactic-co-glycolic acid) (PLGA) and natural proteins, such as, for example, gelatin (denatured collagen) and elastin and a method of making thereof.
    Type: Application
    Filed: May 10, 2006
    Publication date: November 23, 2006
    Inventors: Peter Lelkes, Mengyan Li, Mark Mondrinos, Frank Ko