Patents by Inventor Mark Munch

Mark Munch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050183845
    Abstract: A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
    Type: Application
    Filed: April 20, 2005
    Publication date: August 25, 2005
    Inventors: Mark Munch, Kenneth Goodson, David Corbin, Shulin Zeng, Thomas Kenny, James Shook
  • Publication number: 20050183443
    Abstract: A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
    Type: Application
    Filed: April 20, 2005
    Publication date: August 25, 2005
    Inventors: Mark Munch, Kenneth Goodson, David Corbin, Shulin Zeng, Thomas Kenny, James Shook
  • Publication number: 20050183445
    Abstract: A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
    Type: Application
    Filed: April 20, 2005
    Publication date: August 25, 2005
    Inventors: Mark Munch, Kenneth Goodson, David Corbin, Shulin Zeng, Thomas Kenny, James Shook
  • Publication number: 20050016715
    Abstract: A hermetic closed loop fluid system for controlling temperature of a heat source includes at least one component including at least one heat exchanger in contact with the heat source. The heat exchanger is configured to pass a fluid therethrough, wherein the fluid performs thermal exchange with the heat source. A predetermined amount of the fluid remains within the fluid system for a desired amount of operating time. The desired amount of operating time is preferably at least 10 years. Alternatively, the desired amount of operating time is at least 3 years. The predetermined amount of fluid is preferably ninety percent of an initial amount of fluid. Alternatively, the predetermined amount of fluid is seventy five percent of an initial amount of fluid. Still alternatively, at least fifty percent of the fluid can remain within the fluid system for the desired amount of operating time. The fluid can be a single phase fluid. The fluid can also be a two phase fluid.
    Type: Application
    Filed: January 29, 2004
    Publication date: January 27, 2005
    Inventors: Douglas Werner, Mark Munch, Thomas Kenny
  • Publication number: 20040233639
    Abstract: A mounting assembly comprises a rigid support bracket configured to substantially surround a heat source. The rigid support bracket is coupled to a circuit board. The mounting assembly also comprises a removable lid that is coupled to the rigid support bracket and configured to provide selective access to the heat source. The mounting assembly further comprises a heat exchanger coupled to the heat source, wherein the heat exchanger is positioned between the heat source and the removable lid. The removable lid is preferably configured and has a desired stiffness to urge the heat exchanger in contact by a substantially constant force with the heat source and prevents unwanted movement of the heat source. Further, the support bracket structure is configured to transfer the substantially constant force over a relatively large surface area on the circuit board thereby protecting the heat source from bending, breaking or collapsing from the substantially constant force.
    Type: Application
    Filed: December 24, 2003
    Publication date: November 25, 2004
    Applicant: Cooligy, Inc.
    Inventors: Girish Upadhya, Mark Munch, Peng Zhou, Kenneth Goodson, Thomas W. Kenny
  • Publication number: 20040234378
    Abstract: An electroosmotic pump used in a closed loop cooling system. The pump includes a fluid chamber, a pumping element, an inlet electrode, an outlet electrode, and means for providing electrical voltage to the inlet electrode and the outlet electrode to produce an electrical field therebetween. The pumping element is configured to pump fluid therethrough, and the pumping element is positioned to segment the fluid chamber into an inlet chamber including a fluid inlet port and an outlet chamber including a fluid outlet port. The size of the inlet chamber is proportional to a predetermined residence time of the inlet chamber. The inlet electrode is positioned within the inlet chamber and a predetermined distance from a first surface of the pumping element. The outlet electrode is positioned within the outlet chamber and a predetermined distance from a second surface of the pumping element.
    Type: Application
    Filed: January 29, 2004
    Publication date: November 25, 2004
    Inventors: James Lovette, Mark Munch, James Gill Shook, Shulin Zeng, Thomas W. Kenny, Douglas Werner, Zbigniew Cichocki, Tien-Chih Eric Lin
  • Publication number: 20040206477
    Abstract: A heat exchanger and method of manufacturing thereof comprises an interface layer for cooling a heat source. The interface layer is coupled to the heat source and is configured to pass fluid therethrough. The heat exchanger further comprises a manifold layer that is coupled to the interface layer. The manifold layer includes at least one first port that is coupled to a first set of individualized holes which channel fluid through the first set. The manifold layer includes at least one second port coupled to a second set of individualized holes which channel fluid through the second set. The first set of holes and second set of holes are arranged to provide a minimized fluid path distance between the first and second ports to adequately cool the heat source. Preferably, each hole in the first set is positioned a closest optimal distance to an adjacent hole the second set.
    Type: Application
    Filed: October 6, 2003
    Publication date: October 21, 2004
    Applicant: Cooligy, Inc.
    Inventors: Thomas W. Kenny, Mark Munch, Peng Zhou, James Gill Shook, Girish Upadhya, Kenneth Goodson, Dave Corbin, Mark McMaster, James Lovette
  • Publication number: 20040182551
    Abstract: A method of cooling at least one heat generating device using a cooling system is disclosed. The method comprises the steps of using at least one pump to cause a fluid to flow in at least one heat exchanger and adjusting a pressure of the fluid to correspondingly adjust a boiling point temperature of the fluid in the at least one heat exchanger. The method can also include the step of providing at least one heat rejector for rejecting heat from the system, the at least one heat rejector being situated downstream of the at least one heat exchanger. The step of adjusting a pressure of the fluid can comprise adjusting a pressure of the fluid during charging and sealing of the system. Further, the step of adjusting a pressure of the fluid can comprise adjusting a composition and volume of a gas and liquid introduced during charging of the system.
    Type: Application
    Filed: August 18, 2003
    Publication date: September 23, 2004
    Applicant: Cooligy, Inc.
    Inventors: Peng Zhou, Shulin Zeng, Thomas Kenny, Mark Munch, Girish Upadhya, Kenneth Goodson, Juan Santiago
  • Publication number: 20040148959
    Abstract: A liquid cooling system utilizing minimal size and volume enclosures, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers. Also described are methods of preventing cracking in a liquid cooling system. In all these cases, the system must be designed to tolerate expansion when water is frozen.
    Type: Application
    Filed: August 18, 2003
    Publication date: August 5, 2004
    Applicant: Cooligy, Inc.
    Inventors: Mark Munch, Kenneth Goodson, David Corbin, Shulin Zeng, Thomas W. Kenny, James Gill Shook
  • Publication number: 20040112585
    Abstract: A method of controlling temperature of a heat source in contact with a heat exchanging surface of a heat exchanger, wherein the heat exchanging surface is substantially aligned along a plane. The method comprises channeling a first temperature fluid to the heat exchanging surface, wherein the first temperature fluid undergoes thermal exchange with the heat source along the heat exchanging surface. The method comprises channeling a second temperature fluid from the heat exchange surface, wherein fluid is channeled to minimize temperature differences along the heat source. The temperature differences are minimized by optimizing and controlling the fluidic and thermal resistances in the heat exchanger. The resistances to the fluid are influenced by size, volume and surface area of heat transferring features, multiple pumps, fixed and variable valves and flow impedance elements in the fluid path, pressure and flow rate control of the fluid, and other factors.
    Type: Application
    Filed: October 30, 2003
    Publication date: June 17, 2004
    Applicant: Cooligy Inc.
    Inventors: Kenneth Goodson, Thomas Kenny, Peng Zhou, Girish Upadhya, Mark Munch, Mark McMaster, James Hom
  • Publication number: 20040112571
    Abstract: A method and apparatus for cooling a hat source configured along a lane. The heat exchanger comprises an interface layer that perform thermal exchanger with the heat source and configured to pass fluid from a first side to a second side. The manifold layer comprises a first layer in contact with the heat source and has an appropriate thermal conductivity to pass heat to the interface layer. The manifold layer further comprises a second layer couple to the first layer and in contact with the second side of the interface layer. The first layer comprises a recess area having a heat conducting region in contact with the heat exchanging layer. The first layer includes at least one inlet and/or outlet port. The second layer includes at least one inlet and/or outlet port. At least one inlet and/or outlet port is positioned substantially parallel or perpendicular with respect to the plane.
    Type: Application
    Filed: October 30, 2003
    Publication date: June 17, 2004
    Applicant: Cooligy, Inc.
    Inventors: Thomas W. Kenny, Mark Munch, Peng Zhou, James Gill Shook, Girish Upadhya, Kenneth Goodson, Dave Corbin, Mark McMaster, James Lovette, James Hom
  • Publication number: 20040104022
    Abstract: A heat exchanger apparatus and method of manufacturing comprising: an interface layer for cooling a heat source and configured to pass fluid therethrough, the interface layer having an appropriate thermal conductivity and a manifold layer for providing fluid to the interface layer, wherein the manifold layer is configured to achieve temperature uniformity in the heat source preferably by cooling interface hot spot regions. A plurality of fluid ports are configured to the heat exchanger such as an inlet port and outlet port, whereby the fluid ports are configured vertically and horizontally. The manifold layer circulates fluid to a predetermined interface hot spot region in the interface layer, wherein the interface hot spot region is associated with the hot spot. The heat exchanger preferably includes an intermediate layer positioned between the interface and manifold layers and optimally channels fluid to the interface hot spot region.
    Type: Application
    Filed: May 16, 2003
    Publication date: June 3, 2004
    Applicant: Cooligy, Inc.
    Inventors: Thomas W. Kenny, Mark Munch, Peng Zhou, James Gill Shook, Girish Upadhya, Kenneth Goodson, David Corbin
  • Publication number: 20040104010
    Abstract: A microchannel heat exchanger coupled to a heat source and configured for cooling the heat source comprising a first set of fingers for providing fluid at a first temperature to a heat exchange region, wherein fluid in the heat exchange region flows toward a second set of fingers and exits the heat exchanger at a second temperature, wherein each finger is spaced apart from an adjacent finger by an appropriate dimension to minimize pressure drop in the heat exchanger and arranged in parallel. The microchannel heat exchanger includes an interface layer having the heat exchange region. Preferably, a manifold layer includes the first set of fingers and the second set of fingers configured within to cool hot spots in the heat source. Alternatively, the interface layer includes the first set and second set of fingers configured along the heat exchange region.
    Type: Application
    Filed: May 16, 2003
    Publication date: June 3, 2004
    Applicant: Cooligy, Inc.
    Inventors: Thomas W. Kenny, Mark Munch, Peng Zhou, James Gill Shook, Girish Upadhya, Kenneth Goodson, David Corbin
  • Patent number: 6181541
    Abstract: A circuit protection device for protecting an electrical load includes a three-terminal switch element such as a bipolar, or junction or metal-oxide-semiconductor field effect, transistor and a positive temperature compensation (PTC) resistor. In several embodiments the PTC resistor is in series with the current-carrying electrodes of the transistor. In other embodiments the PTC resistor, or a second PTC resistor, is connected to a control element of the transistor. Both DC and AC load-protection circuits are described.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: January 30, 2001
    Inventors: Shukri Souri, Hugh Duffy, Adrian I. Cogan, Mark Munch, Nick Nickols