Patents by Inventor Mark Naoshi Kawaguchi

Mark Naoshi Kawaguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230268189
    Abstract: Methods and apparatuses for precise trimming of silicon-containing materials are provided. Methods involve oxidizing silicon-containing materials and thermally removing the oxidized silicon-containing materials at particular temperatures for a self-limiting etch process. Methods also involve a surface reaction limited process using a halogen source and modulated temperature and exposure duration to etch small amounts of silicon-containing materials. Apparatuses are capable of flowing multiple oxidizers at particular temperature ranges to precisely etch substrates.
    Type: Application
    Filed: January 21, 2022
    Publication date: August 24, 2023
    Inventors: Nathan Musselwhite, Ji Zhu, Gerome Michel Dominique Melaet, Mark Naoshi Kawaguchi
  • Publication number: 20230207328
    Abstract: Various embodiments described herein relate to methods and apparatus for etching a semiconductor substrate to remove a target material from a surface of the substrate. Generally, the techniques described herein are thermal techniques that do not rely on the use of plasma. In a number of embodiments, a particular gas mixture is provided to the reaction chamber to react with the target material. The gas mixture may include a combination of a halogen source such as hydrogen fluoride (HF), an organic solvent and/or water, an additive, and a carrier gas. A number of different materials may be used for the organic solvent and/or for the additive.
    Type: Application
    Filed: March 29, 2021
    Publication date: June 29, 2023
    Inventors: Nathan MUSSELWHITE, Ji ZHU, Gerome Michel Dominique MELAET, David S. L. MUI, Mark Naoshi KAWAGUCHI, Adrien LAVOIE
  • Publication number: 20230131233
    Abstract: Apparatuses and methods are described. An apparatus may include a processing chamber including chamber walls, a chamber heater configured to heat the walls, a pedestal positioned within the chamber and including a substrate heater having a plurality of light emitting diodes (LEDs) configured to emit light with wavelengths in the range of 400 nanometers (nm) and 800 nm, a window positioned above the heater and having a material transparent to light with wavelengths in the range of 400 nm and 800 nm, and three or more substrate supports, each having a substrate support surface vertically offset from the window and configured to support a substrate such that the window and the substrate are offset by a nonzero distance.
    Type: Application
    Filed: March 23, 2021
    Publication date: April 27, 2023
    Inventors: Nathan Lavdovsky, Butch Berney, Mark Naoshi Kawaguchi, Ji Zhu, Hongbo Si
  • Publication number: 20220051938
    Abstract: Methods for forming patterned multi-layer stacks including a metal-containing layer are provided herein. Methods involve using silicon-containing non-metal materials in a multi-layer stack including one sacrificial layer to be later removed and replaced with metal while maintaining etch contrast to pattern the multi-layer stack and selectively remove the sacrificial layer prior to depositing metal. Methods involve using silicon oxycarbide in lieu of silicon nitride, and a sacrificial non-metal material in lieu of a metal-containing layer, to fabricate the multi-layer stack, pattern the multi-layer stack, selectively remove the sacrificial non-metal material to leave spaces in the stack, and deposit metal-containing material into the spaces. Sacrificial non-metal materials include silicon nitride and doped polysilicon, such as boron-doped silicon.
    Type: Application
    Filed: September 10, 2019
    Publication date: February 17, 2022
    Inventors: Hui-Jung Wu, Bart J. van Schravendijk, Mark Naoshi Kawaguchi, Gereng Gunawan, Jay E. Uglow, Nagraj Shankar, Gowri Channa Kamarthy, Kevin M. McLaughlin, Ananda K. Banerji, Jialing Yang, John Hoang, Aaron Lynn Routzahn, Nathan Musselwhite, Meihua Shen, Thorsten Bernd Lill, Hao Chi, Nicholas Dominic Altieri
  • Patent number: 11062897
    Abstract: Methods and apparatuses for etching metal-doped carbon-containing materials are provided herein. Etching methods include using a mixture of an etching gas suitable for etching the carbon component of the metal-doped carbon-containing material and an additive gas suitable for etching the metal component of the metal-doped carbon-containing material and igniting a plasma to selectively remove metal-doped carbon-containing materials relative to underlayers such as silicon oxide, silicon nitride, and silicon, at high temperatures. Apparatuses suitable for etching metal-doped carbon-containing materials are equipped with a high temperature movable pedestal, a plasma source, and a showerhead between a plasma generating region and the substrate.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 13, 2021
    Assignee: Lam Research Corporation
    Inventors: Yongsik Yu, David Wingto Cheung, Kirk J. Ostrowski, Nikkon Ghosh, Karthik S. Colinjivadi, Samantha Tan, Nathan Musselwhite, Mark Naoshi Kawaguchi
  • Patent number: 11011388
    Abstract: Methods and apparatus for laterally etching unwanted material from the sidewalls of a recessed feature are described herein. In various embodiments, the method involves etching a portion of the sidewalls, depositing a protective film over a portion of the sidewalls, and cycling the etching and deposition operations until the unwanted material is removed from the entire depth of the recessed feature. Each etching and deposition operation may target a particular depth along the sidewalls of the feature. In some cases, the unwanted material is removed from the bottom of the feature up, and in other cases the unwanted material is removed from the top of the feature down. Some combination of these may also be used.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: May 18, 2021
    Assignee: Lam Research Corporation
    Inventors: Kwame Eason, Pilyeon Park, Mark Naoshi Kawaguchi, Seung-Ho Park, Hsiao-Wei Chang
  • Publication number: 20190206697
    Abstract: Methods and apparatus for laterally etching unwanted material from the sidewalls of a recessed feature are described herein. In various embodiments, the method involves etching a portion of the sidewalls, depositing a protective film over a portion of the sidewalls, and cycling the etching and deposition operations until the unwanted material is removed from the entire depth of the recessed feature. Each etching and deposition operation may target a particular depth along the sidewalls of the feature. In some cases, the unwanted material is removed from the bottom of the feature up, and in other cases the unwanted material is removed from the top of the feature down. Some combination of these may also be used.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Kwame Eason, Pilyeon Park, Mark Naoshi Kawaguchi, Seung-Ho Park, Hsiao-Wei Chang
  • Patent number: 10276398
    Abstract: Methods and apparatus for laterally etching unwanted material from the sidewalls of a recessed feature are described herein. In various embodiments, the method involves etching a portion of the sidewalls, depositing a protective film over a portion of the sidewalls, and cycling the etching and deposition operations until the unwanted material is removed from the entire depth of the recessed feature. Each etching and deposition operation may target a particular depth along the sidewalls of the feature. In some cases, the unwanted material is removed from the bottom of the feature up, and in other cases the unwanted material is removed from the top of the feature down. Some combination of these may also be used.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: April 30, 2019
    Assignee: Lam Research Corporation
    Inventors: Kwame Eason, Pilyeon Park, Mark Naoshi Kawaguchi, Seung-Ho Park, Hsiao-Wei Chang
  • Publication number: 20190043732
    Abstract: Methods and apparatus for laterally etching unwanted material from the sidewalls of a recessed feature are described herein. In various embodiments, the method involves etching a portion of the sidewalls, depositing a protective film over a portion of the sidewalls, and cycling the etching and deposition operations until the unwanted material is removed from the entire depth of the recessed feature. Each etching and deposition operation may target a particular depth along the sidewalls of the feature. In some cases, the unwanted material is removed from the bottom of the feature up, and in other cases the unwanted material is removed from the top of the feature down. Some combination of these may also be used.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 7, 2019
    Inventors: Kwame Eason, Pilyeon Park, Mark Naoshi Kawaguchi, Seung-Ho Park, Hsiao-Wei Chang
  • Publication number: 20180358220
    Abstract: Methods and apparatuses for etching metal-doped carbon-containing materials are provided herein. Etching methods include using a mixture of an etching gas suitable for etching the carbon component of the metal-doped carbon-containing material and an additive gas suitable for etching the metal component of the metal-doped carbon-containing material and igniting a plasma to selectively remove metal-doped carbon-containing materials relative to underlayers such as silicon oxide, silicon nitride, and silicon, at high temperatures. Apparatuses suitable for etching metal-doped carbon-containing materials are equipped with a high temperature movable pedestal, a plasma source, and a showerhead between a plasma generating region and the substrate.
    Type: Application
    Filed: June 30, 2017
    Publication date: December 13, 2018
    Inventors: Yongsik Yu, David Wingto Cheung, Kirk J. Ostrowski, Nikkon Ghosh, Karthik S. Colinjivadi, Samantha Tan, Nathan Musselwhite, Mark Naoshi Kawaguchi
  • Patent number: 9735002
    Abstract: A method and apparatus for removing volatile residues from a substrate are provided. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a load lock chamber and at least one processing chamber coupled to a transfer chamber, treating a substrate in the processing chamber with a chemistry comprising halogen, and removing volatile residues from the treated substrate in the load lock chamber.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 15, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Mark Naoshi Kawaguchi, Kin Pong Lo, Brett Christian Hoogensen, Sandy M. Wen, Steven H. Kim
  • Patent number: 9159593
    Abstract: Apparatus and methods for removing particle contaminants from a solid surface includes providing a layer of a viscoelastic material on the solid surface. The viscoelastic material is applied as a thin film and exhibits substantial liquid-like characteristics. The viscoelastic material at least partially binds with the particle contaminants. A high velocity liquid is applied to the viscoelastic material, such that the viscoelastic material exhibits solid-like behavior. The viscoelastic material is thus dislodged from the solid surface along with the particle contaminants, thereby cleaning the solid surface of the particle contaminants.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: October 13, 2015
    Assignee: Lam Research Corporation
    Inventors: Mark Naoshi Kawaguchi, David Mui, Mark Wilcoxson
  • Publication number: 20100313917
    Abstract: Apparatus and methods for removing particle contaminants from a solid surface includes providing a layer of a viscoelastic material on the solid surface. The viscoelastic material is applied as a thin film and exhibits substantial liquid-like characteristics. The viscoelastic material at least partially binds with the particle contaminants. A high velocity liquid is applied to the viscoelastic material, such that the viscoelastic material exhibits solid-like behavior. The viscoelastic material is thus dislodged from the solid surface along with the particle contaminants, thereby cleaning the solid surface of the particle contaminants.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 16, 2010
    Applicant: Lam Research Corp.
    Inventors: Mark Naoshi Kawaguchi, David Mui, Mark Wilcoxson
  • Publication number: 20100258142
    Abstract: The embodiments provide apparatus and methods for removing particles from a substrate surface, especially from a surface of a patterned substrate (or wafer). The cleaning apparatus and methods have advantages in cleaning patterned substrates with fine features without substantially damaging the features on the substrate surface. The cleaning apparatus and methods involve using a viscoelastic cleaning material containing a polymeric compound with large molecular weight, such as greater than 10,000 g/mol. The viscoelastic cleaning material entraps at least a portion of the particles on the substrate surface. The application of a force on the viscoelastic cleaning material over a sufficiently short period time causes the material to exhibit solid-like properties that facilitate removal of the viscoelastic cleaning material along with the entrapped particles. A number of forces can be applied over a short period to access the solid-like nature of the viscoelastic cleaning material.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 14, 2010
    Inventors: Mark Naoshi Kawaguchi, David Mui, Mark Wilcoxson
  • Patent number: 7655571
    Abstract: A method and apparatus for removing volatile residues from a substrate are provided. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a load lock chamber and at least one processing chamber coupled to a transfer chamber, treating a substrate in the processing chamber with a chemistry comprising halogen, and removing volatile residues from the treated substrate in the load lock chamber.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: February 2, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mark Naoshi Kawaguchi, Kin Pong Lo, Brett Christian Hoogensen, Sandy M. Wen, Steven M. Kim
  • Publication number: 20090032880
    Abstract: Methods and apparatuses to etch recesses in a silicon substrate having an isotropic character to undercut a transistor in preparation for a source/drain regrowth. In one embodiment, a cap layer of a first thickness is deposited over a transistor gate stack and spacer structure. The cap layer is then selectively etched in a first region of the substrate, such as a p-MOS region, using a first isotropic plasma etch process and a second anisotropic plasma etch process. In another embodiment, an at least partially isotropic plasma recess etch is performed to provide a recess adjacent to the channel region of the transistor. In a particular embodiment, the plasma etch process provides a recess sidewall that is neither positively sloped nor more than 10 nm re-entrant.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 5, 2009
    Inventors: Mark Naoshi Kawaguchi, Meihua Shen, Hiroki Sasano, Rong Chen
  • Publication number: 20090014324
    Abstract: A method and apparatus for removing volatile residues from a substrate are provided. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a load lock chamber and at least one processing chamber coupled to a transfer chamber, treating a substrate in the processing chamber with a chemistry comprising halogen, and removing volatile residues from the treated substrate in the load lock chamber.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 15, 2009
    Inventors: Mark Naoshi Kawaguchi, Kin Pong Lo, Brett Christian Hoogensen, Sandy M. Wen, Steven H. Kim
  • Publication number: 20080102646
    Abstract: A method and apparatus for removing volatile residues from a substrate are provided. In one embodiment, a method for volatile residues from a substrate includes providing a processing system having a load lock chamber and at least one processing chamber coupled to a transfer chamber, treating a substrate in the processing chamber with a chemistry comprising halogen, and removing volatile residues from the treated substrate in the load lock chamber.
    Type: Application
    Filed: October 26, 2006
    Publication date: May 1, 2008
    Inventors: Mark Naoshi Kawaguchi, Kin Pong Lo, Brett Christian Hoogensen, Sandy M. Wen, Steven H. Kim
  • Publication number: 20050158667
    Abstract: A photoresist or a residue of the photoresist may by removed by the hydrogen and water plasma mixture. The process may be performed at a temperature range between about 150° C. and about 450° C., preferably about 250° C., and a power range between about 500 W and about 3000 W, preferably about 1400 W.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 21, 2005
    Inventors: Huong Thanh Nguyen, Mark Naoshi Kawaguchi, Mehul Naik, Li-Qun Xia, Ellie Yieh
  • Patent number: 6680164
    Abstract: A photoresist or a residue of the photoresist may by removed by the hydrogen and water plasma mixture. The process may be performed at a temperature range between about 150° C. and about 450° C., preferably about 250° C., and a power range between about 500 W and about 3000 W, preferably about 1400 W.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: January 20, 2004
    Assignee: Applied Materials Inc.
    Inventors: Huong Thanh Nguyen, Mark Naoshi Kawaguchi, Mehul B. Naik, Li-Qun Xia, Ellie Yieh