Patents by Inventor Mark P. D'Evelyn

Mark P. D'Evelyn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210167232
    Abstract: According to the present disclosure, techniques related to manufacturing and applications of power photodiode structures and devices based on group-III metal nitride and gallium-based substrates are provided. More specifically, embodiments of the disclosure include techniques for fabricating photodiode devices comprising one or more of GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, structures and devices. Such structures or devices can be used for a variety of applications including optoelectronic devices, photodiodes, power-over-fiber receivers, and others.
    Type: Application
    Filed: January 15, 2021
    Publication date: June 3, 2021
    Inventors: Drew W. CARDWELL, Mark P. D'EVELYN
  • Publication number: 20210167231
    Abstract: According to the present disclosure, techniques related to manufacturing and applications of power photodiode structures and devices based on group-III metal nitride and gallium-based substrates are provided. More specifically, embodiments of the disclosure include techniques for fabricating photodiode devices comprising one or more of GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, structures and devices. Such structures or devices can be used for a variety of applications including optoelectronic devices, photodiodes, power-over-fiber receivers, and others.
    Type: Application
    Filed: January 15, 2021
    Publication date: June 3, 2021
    Inventors: Drew W. CARDWELL, Mark P. D'EVELYN
  • Publication number: 20210020798
    Abstract: According to the present disclosure, techniques related to manufacturing and applications of power photodiode structures and devices based on group-III metal nitride and gallium-based substrates are provided. More specifically, embodiments of the disclosure include techniques for fabricating photodiode devices comprising one or more of GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, structures and devices. Such structures or devices can be used for a variety of applications including optoelectronic devices, photodiodes, power-over-fiber receivers, and others.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Inventors: Drew W. CARDWELL, Mark P. D'EVELYN
  • Publication number: 20200283892
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 10, 2020
    Inventors: Douglas W. POCIUS, Derrick S. KAMBER, Mark P. D'EVELYN, Jonathan D. COOK
  • Publication number: 20200263321
    Abstract: A gallium-containing nitride crystals are disclosed, comprising: a top surface having a crystallographic orientation within about 5 degrees of a plane selected from a (0001) +c-plane and a (000-1) ?c-plane; a substantially wurtzite structure; n-type electronic properties; an impurity concentration of hydrogen greater than about 5×1017 cm?3, an impurity concentration of oxygen between about 2×1017 cm?3 and about 1×1020 cm?3, an [H]/[O] ratio of at least 0.3; an impurity concentration of at least one of Li, Na, K, Rb, Cs, Ca, F, and Cl greater than about 1×1016 cm?3, a compensation ratio between about 1.0 and about 4.0; an absorbance per unit thickness of at least 0.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Inventors: Wenkan JIANG, Dirk EHRENTRAUT, Mark P. D'EVELYN
  • Publication number: 20200224331
    Abstract: A method for forming a laterally-grown group III metal nitride crystal includes providing a substrate, the substrate including one of sapphire, silicon carbide, gallium arsenide, silicon, germanium, a silicon-germanium alloy, MgAl2O4 spinel, ZnO, ZrB2, BP, InP, AlON, ScAlMgO4, YFeZnO4, MgO, Fe2NiO4, LiGa5O8, Na2MoO4, Na2WO4, In2CdO4, lithium aluminate (LiAlO2), LiGaO2, Ca8La2(PO4)6O2, gallium nitride, or aluminum nitride (AlN), forming a pattern on the substrate, the pattern comprising growth centers having a minimum dimension between 1 micrometer and 100 micrometers, and being characterized by at least one pitch dimension between 20 micrometers and 5 millimeters, growing a group III metal nitride from the pattern of growth centers vertically and laterally, and removing the laterally-grown group III metal nitride layer from the substrate.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 16, 2020
    Inventors: Mark P. D'EVELYN, Derrick S. KAMBER
  • Patent number: 10648102
    Abstract: Gallium-containing nitride crystals are disclosed, comprising: a top surface having a crystallographic orientation within about 5 degrees of a plane selected from a (0001) +c-plane and a (000-1) ?c-plane; a substantially wurtzite structure; n-type electronic properties; an impurity concentration of hydrogen greater than about 5×1017 cm?3; an impurity concentration of oxygen between about 2×1017 cm?3 and about 1×1020 cm?3; an [H]/[O] ratio of at least 0.3; an impurity concentration of at least one of Li, Na, K, Rb, Cs, Ca, F, and CI greater than about 1×1016 cm?3; a compensation ratio between about 1.0 and about 4.0; an absorbance per unit thickness of at least 0.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: May 12, 2020
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Wenkan Jiang, Dirk Ehrentraut, Mark P. D'Evelyn
  • Patent number: 10619239
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: April 14, 2020
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Douglas W. Pocius, Derrick S. Kamber, Mark P. D'Evelyn, Jonathan D. Cook
  • Patent number: 10604865
    Abstract: Methods for large-scale manufacturing of semipolar gallium nitride boules are disclosed. The disclosed methods comprise suspending large-area single crystal seed plates in a rack, placing the rack in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and growing crystals ammonothermally. A bi-faceted growth morphology may be maintained to facilitate fabrication of large area semipolar wafers without growing thick boules.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: March 31, 2020
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Mark P. D'Evelyn, Dirk Ehrentraut, Derrick S. Kamber, Bradley C. Downey
  • Publication number: 20200087813
    Abstract: Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 19, 2020
    Inventors: Mark P. D'Evelyn, James S. Speck, Derrick S. Kamber, Douglas W. Pocius
  • Patent number: 10553754
    Abstract: A light emitting diode device has a bulk gallium and nitrogen containing substrate with an active region. The device has a lateral dimension and a thick vertical dimension such that the geometric aspect ratio forms a volumetric diode that delivers a nearly uniform current density across the range of the lateral dimension.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: February 4, 2020
    Assignee: SORAA, INC.
    Inventors: Thomas M. Katona, James W. Raring, Mark P. D'Evelyn, Michael R. Krames, Aurelien J. F. David
  • Patent number: 10490696
    Abstract: A method of forming a III-Nitride based device comprising: (a) depositing first layers by MOCVD on a substrate, wherein the first layers comprise device layers of III-Nitride material; and (b) depositing epitaxial second layers over the first layers by at least one of sputtering, plasma deposition, pulsed laser deposition, or liquid phase epitaxy, wherein the second layers comprise III-Nitride material and define at least partially a tunnel junction.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: November 26, 2019
    Assignee: SORAA, INC.
    Inventors: Aurelien J. F. David, Mark P. D'Evelyn, Christophe A. Hurni, Nathan Young, Michael J. Cich
  • Patent number: 10400352
    Abstract: Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: September 3, 2019
    Assignee: SORAA, INC.
    Inventors: Mark P. D'Evelyn, James S. Speck, Derrick S. Kamber, Douglas W. Pocius
  • Publication number: 20190161858
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 30, 2019
    Inventors: Douglas W. POCIUS, Derrick S. KAMBER, Mark P. D'EVELYN, Jonathan D. COOK
  • Patent number: 10301745
    Abstract: An ultralow defect gallium-containing nitride crystal and methods of making ultralow defect gallium-containing nitride crystals are disclosed. The crystals are useful as substrates for light emitting diodes, laser diodes, transistors, photodetectors, solar cells, and photoelectrochemical water splitting for hydrogen generators.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: May 28, 2019
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Mark P. D'Evelyn, Dirk Ehrentraut, Wenkan Jiang, Bradley C. Downey
  • Publication number: 20190067517
    Abstract: A light emitting diode device has a bulk gallium and nitrogen containing substrate with an active region. The device has a lateral dimension and a thick vertical dimension such that the geometric aspect ratio forms a volumetric diode that delivers a nearly uniform current density across the range of the lateral dimension.
    Type: Application
    Filed: May 29, 2018
    Publication date: February 28, 2019
    Inventors: Thomas M. Katona, James W. Raring, Mark P. D'Evelyn, Michael R. Krames, Aurelien J.F. David
  • Patent number: 10174438
    Abstract: An apparatus for processing material at elevated pressure, the apparatus comprising: (a) two or more radial restraint structures defining an interior region configured to receive a processing chamber, the radial restraint structures being configured to resist an outward radial force from the interior region; (b) upper and lower crown members being disposed axially on either end of the interior region and configured to resist an outward axial force from the interior region; (c) a first axial restraint structure coupling the upper crown member and the lower crown member to provide axial restraint of the upper crown member and the lower crown; and (d) a second axial restraint structure compressing the two or more radial restraint structures to provide an axial restraint of the two or more radial restraint structures.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: January 8, 2019
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Rajeev Tirumala Pakalapati, Mark P. D'Evelyn
  • Publication number: 20190003078
    Abstract: Methods for large-scale manufacturing of semipolar gallium nitride boules are disclosed. The disclosed methods comprise suspending large-area single crystal seed plates in a rack, placing the rack in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and growing crystals ammonothermally. A bi-faceted growth morphology may be maintained to facilitate fabrication of large area semipolar wafers without growing thick boules.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 3, 2019
    Inventors: Mark P. D'EVELYN, Dirk EHRENTRAUT, Derrick S. KAMBER, Bradley C. DOWNEY
  • Patent number: RE47241
    Abstract: A light emitting device includes a substrate having a surface region and a light emitting diode overlying the surface region. The light emitting diode is fabricated on a semipolar or nonpolar GaN containing substrate and emits electromagnetic radiation of a first wavelength. The diode includes a quantum well region characterized by an electron wave function and a hole wave function. The electron wave function and the hole wave function are substantially overlapped within a predetermined spatial region of the quantum well region. The device has a transparent phosphor overlying the light emitting diode. The phosphor is excited by the substantially polarized emission to emit electromagnetic radiation of a second wavelength.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 12, 2019
    Assignee: Soraa, Inc.
    Inventors: Mark P. D'Evelyn, Rajat Sharma, Eric M. Hall, Daniel F. Feezell
  • Patent number: RE47711
    Abstract: A packaged optical device includes a substrate having a surface region with light emitting diode devices fabricated on a semipolar or nonpolar GaN substrate. The LEDs emit polarized light and are characterized by an overlapped electron wave function and a hole wave function. Phosphors within the package are excited by the polarized light and, in response, emit electromagnetic radiation of a second wavelength.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: November 5, 2019
    Assignee: SORAA, INC.
    Inventors: James W. Raring, Eric M. Hall, Mark P. D'Evelyn