Patents by Inventor Marko J. Tuominen

Marko J. Tuominen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11640899
    Abstract: Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: May 2, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi P. Haukka, Marko J. Tuominen, Chiyu Zhu
  • Publication number: 20220051872
    Abstract: Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 17, 2022
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi P. Haukka, Marko J. Tuominen, Chiyu Zhu
  • Patent number: 11230769
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: January 25, 2022
    Assignee: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi P. Haukka, Marko J. Tuominen, Chiyu Zhu
  • Publication number: 20200308709
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: May 22, 2020
    Publication date: October 1, 2020
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi P. Haukka, Marko J. Tuominen, Chiyu Zhu
  • Patent number: 10662533
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 26, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi P. Haukka, Marko J. Tuominen, Chiyu Zhu
  • Patent number: 10665425
    Abstract: Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 26, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi P. Haukka, Marko J. Tuominen, Chiyu Zhu
  • Publication number: 20190249312
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi P. Haukka, Marko J. Tuominen, Chiyu Zhu
  • Publication number: 20190244786
    Abstract: Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi P. Haukka, Marko J. Tuominen, Chiyu Zhu
  • Patent number: 9587307
    Abstract: The invention relates generally to processes for enhancing the deposition of noble metal thin films on a substrate by atomic layer deposition. Treatment with gaseous halides or metalorganic compounds reduces the incubation time for deposition of noble metals on particular surfaces. The methods may be utilized to facilitate selective deposition. For example, selective deposition of noble metals on high-k materials relative to insulators can be enhanced by pretreatment with halide reactants. In addition, halide treatment can be used to avoid deposition on the quartz walls of the reaction chamber.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 7, 2017
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Suvi P. Haukka, Marko J. Tuominen, Antti Rahtu
  • Publication number: 20140087076
    Abstract: The invention relates generally to processes for enhancing the deposition of noble metal thin films on a substrate by atomic layer deposition. Treatment with gaseous halides or metalorganic compounds reduces the incubation time for deposition of noble metals on particular surfaces. The methods may be utilized to facilitate selective deposition. For example, selective deposition of noble metals on high-k materials relative to insulators can be enhanced by pretreatment with halide reactants. In addition, halide treatment can be used to avoid deposition on the quartz walls of the reaction chamber.
    Type: Application
    Filed: July 24, 2013
    Publication date: March 27, 2014
    Applicant: ASM International N.V.
    Inventors: Suvi P. Haukka, Marko J. Tuominen, Antti Rahtu
  • Patent number: 8501275
    Abstract: The invention relates generally to processes for enhancing the deposition of noble metal thin films on a substrate by atomic layer deposition. Treatment with gaseous halides or metalorganic compounds reduces the incubation time for deposition of noble metals on particular surfaces. The methods may be utilized to facilitate selective deposition. For example, selective deposition of noble metals on high-k materials relative to insulators can be enhanced by pretreatment with halide reactants. In addition, halide treatment can be used to avoid deposition on the quartz walls of the reaction chamber.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: August 6, 2013
    Assignee: ASM International N.V.
    Inventors: Suvi P. Haukka, Marko J. Tuominen, Antti Rahtu
  • Publication number: 20120189774
    Abstract: The invention relates generally to processes for enhancing the deposition of noble metal thin films on a substrate by atomic layer deposition. Treatment with gaseous halides or metalorganic compounds reduces the incubation time for deposition of noble metals on particular surfaces. The methods may be utilized to facilitate selective deposition. For example, selective deposition of noble metals on high-k materials relative to insulators can be enhanced by pretreatment with halide reactants. In addition, halide treatment can be used to avoid deposition on the quartz walls of the reaction chamber.
    Type: Application
    Filed: September 21, 2011
    Publication date: July 26, 2012
    Applicant: ASM INTERNATIONAL N.V.
    Inventors: Suvi P. Haukka, Marko J. Tuominen, Antti Rahtu
  • Patent number: 8025922
    Abstract: The invention relates generally to processes for enhancing the deposition of noble metal thin films on a substrate by atomic layer deposition. Treatment with gaseous halides or metalorganic compounds reduces the incubation time for deposition of noble metals on particular surfaces. The methods may be utilized to facilitate selective deposition. For example, selective deposition of noble metals on high-k materials relative to insulators can be enhanced by pretreatment with halide reactants. In addition, halide treatment can be used to avoid deposition on the quartz walls of the reaction chamber.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: September 27, 2011
    Assignee: ASM International N.V.
    Inventors: Suvi P. Haukka, Marko J. Tuominen, Antti Rahtu