Patents by Inventor Marko Radosavljevic

Marko Radosavljevic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240204060
    Abstract: IC structures with nanoribbon stacks without dielectric protection caps for top nanoribbons, and associated methods and devices, are disclosed. An example IC structure includes a stack of nanoribbons, an opening over the top nanoribbon of the stack of nanoribbons, and a gate electrode material in the opening, where the opening has a first portion, a second portion, and a third portion, the second portion is between the first portion and the third portion, and where a width of a portion of the gate electrode material in the second portion is smaller than a width of a portion of the gate electrode material in the first portion. In such an IC structure, a gate insulator on the sidewalls of the first portion of the opening is materially discontinuous from a gate insulator on the sidewalls of the third portion of the opening.
    Type: Application
    Filed: December 14, 2022
    Publication date: June 20, 2024
    Applicant: Intel Corporation
    Inventors: Rohit Galatage, Cheng-Ying Huang, Jack T. Kavalieros, Marko Radosavljevic, Mauro J. Kobrinsky, Jami Wiedemer, Munzarin Qayyum, Evan Clinton
  • Publication number: 20240204091
    Abstract: Devices, transistor structures, systems, and techniques are described herein related to low aluminum concentration aluminum gallium nitride interlayers for group III-nitride enhancement mode transistors. The low aluminum concentration aluminum gallium nitride interlayer includes a lower aluminum concentration than a polarization layer of the transistor, such that the polarization layer induces a two-dimensional electron gas in a semiconductor layer of the transistor. The low aluminum concentration aluminum gallium nitride interlayer may be implemented as an etch stop layer, as a gate liner, or both.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 20, 2024
    Applicant: Intel Corporation
    Inventors: Heli Vora, Marko Radosavljevic, Pratik Koirala, Han Wui Then, Michael Beumer, Ahmad Zubair, Samuel Bader
  • Publication number: 20240204059
    Abstract: Gallium nitride (GaN) with interlayers for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon. A layer including gallium and nitrogen is above the substrate. The layer including gallium and nitrogen has an interlayer therein. The interlayer confines a plurality of defects to a lower portion of the layer including gallium and nitrogen.
    Type: Application
    Filed: December 14, 2022
    Publication date: June 20, 2024
    Inventors: Pratik KOIRALA, Michael S. BEUMER, Marko RADOSAVLJEVIC, Han Wui THEN
  • Publication number: 20240194672
    Abstract: An IC device may include a first conductive structure in a first section and a second conductive structure in a second section. The second conductive structure is in parallel with the first conductive structure in a first direction. A dimension of the second conductive structure in a second direction perpendicular to the first direction is greater than a dimension of the first conductive structure in the second direction. The first conductive structure may be coupled to a channel region of a transistor. The second conductive structure may be coupled to a channel region of another transistor. A first structure comprising a first dielectric material may be over the first conductive structure. A second structure comprising a second dielectric material may be over the second section. A third structure comprising the first dielectric material may be over the second conductive structure and be at least partially surrounded by the second structure.
    Type: Application
    Filed: December 12, 2022
    Publication date: June 13, 2024
    Applicant: Intel Corporation
    Inventors: Bharath Bangalore Rajeeva, Manish Chandhok, Gurpreet Singh, Kevin Huggins, Eungnak Han, Florian Gstrein, Marko Radosavljevic
  • Patent number: 11996411
    Abstract: Embodiments disclosed herein include stacked forksheet transistor devices, and methods of fabricating stacked forksheet transistor devices. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to an edge of the backbone. A second transistor device includes a second vertical stack of semiconductor channels adjacent to the edge of the backbone. The second transistor device is stacked on the first transistor device.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: May 28, 2024
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Gilbert Dewey, Anh Phan, Nicole K. Thomas, Urusa Alaan, Seung Hoon Sung, Christopher M. Neumann, Willy Rachmady, Patrick Morrow, Hui Jae Yoo, Richard E. Schenker, Marko Radosavljevic, Jack T. Kavalieros, Ehren Mannebach
  • Publication number: 20240170581
    Abstract: An integrated circuit structure includes a sub-fin having at least a first portion that is doped with a first type of dopant, and a second portion that is doped with a second type of dopant. A PN junction is between the first and second portions of the sub-fin. The first type of dopant is one of a p-type or an n-type dopant, and the second type of dopant is the other of the p-type or the n-type dopant. A first contact and a second contact comprise conductive material. In an example, the first contact and the second contact are respectively in contact with the first portion and the second portion of the sub-fin. A diode is formed based on the PN junction between the first and second portions, where the first contact is an anode contact of the diode, and the second contact is a cathode contact of the diode.
    Type: Application
    Filed: November 22, 2022
    Publication date: May 23, 2024
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Ayan Kar, Patrick Morrow, Charles C. Kuo, Nicholas A. Thomson, Benjamin Orr, Kalyan C. Kolluru, Marko Radosavljevic, Jack T. Kavalieros
  • Publication number: 20240153956
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 9, 2024
    Inventors: Seung Hoon SUNG, Cheng-Ying HUANG, Marko RADOSAVLJEVIC, Christopher M. NEUMANN, Susmita GHOSE, Varun MISHRA, Cory WEBER, Stephen M. CEA, Tahir GHANI, Jack T. KAVALIEROS
  • Patent number: 11978799
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: May 7, 2024
    Assignee: Tahoe Research, Ltd.
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Publication number: 20240128269
    Abstract: Described herein are apparatuses, systems, and methods associated with a voltage regulator circuit that includes one or more thin-film transistors (TFTs). The TFTs may be formed in the back-end of an integrated circuit. Additionally, the TFTs may include one or more unique features, such as a channel layer treated with a gas or plasma, and/or a gate oxide layer that is thicker than in prior TFTs. The one or more TFTs of the voltage regulator circuit may improve the operation of the voltage regulator circuit and free up front-end substrate area for other devices. Other embodiments may be described and claimed.
    Type: Application
    Filed: December 26, 2023
    Publication date: April 18, 2024
    Inventors: Abhishek A. SHARMA, Van H. LE, Seung Hoon SUNG, Ravi PILLARISETTY, Marko RADOSAVLJEVIC
  • Publication number: 20240113212
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers, such as undoped semiconductor layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be preferentially etched away, leaving the doped semiconductor layers as fins for a ribbon FET. In another embodiment, an interlayer can be deposited on top of a semiconductor layer, and a ferroelectric layer can be deposited on the interlayer. The interlayer can bridge a gap in lattice parameters between the semiconductor layer and the ferroelectric layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Hai Li, Arnab Sen Gupta, Gauri Auluck, I-Cheng Tung, Brandon Holybee, Rachel A. Steinhardt, Punyashloka Debashis
  • Publication number: 20240113220
    Abstract: Technologies for a transistor with a thin-film ferroelectric gate dielectric are disclosed. In the illustrative embodiment, a transistor has a thin layer of scandium aluminum nitride (ScxAl1-xN) ferroelectric gate dielectric. The channel of the transistor may be, e.g., gallium nitride or molybdenum disulfide. In one embodiment, the ferroelectric polarization changes when voltage is applied and removed from a gate electrode, facilitating switching of the transistor at a lower applied voltage. In another embodiment, the ferroelectric polarization of a gate dielectric of a transistor changes when the voltage is past a positive threshold value or a negative threshold value. Such a transistor can be used as a one-transistor memory cell.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Uygar E. Avci, Kevin P. O'Brien, Scott B. Clendenning, Jason C. Retasket, Shriram Shivaraman, Dominique A. Adams, Carly Rogan, Punyashloka Debashis, Brandon Holybee, Rachel A. Steinhardt, Sudarat Lee
  • Publication number: 20240105810
    Abstract: In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Rachel A. Steinhardt, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Punyashloka Debashis, I-Cheng Tung, Gauri Auluck
  • Publication number: 20240105822
    Abstract: A transistor device may include a first perovskite gate material, a first perovskite ferroelectric material on the first gate material, a first perovskite semiconductor material on the first ferroelectric material, a second perovskite ferroelectric material on the first semiconductor material, a second perovskite gate material on the second ferroelectric material, a third perovskite ferroelectric material on the second gate material, a second perovskite semiconductor material on the third ferroelectric material, a fourth perovskite ferroelectric material on the second semiconductor material, a third perovskite gate material on the fourth ferroelectric material, a first source/drain metal adjacent a first side of each of the first semiconductor material and the second semiconductor material, a second source/drain metal adjacent a second side opposite the first side of each of the first semiconductor material and the second semiconductor material, and dielectric materials between the source/drain metals and the
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Kevin P. O'Brien, Brandon Holybee, Carly Rogan, Dmitri Evgenievich Nikonov, Punyashloka Debashis, Rachel A. Steinhardt, Tristan A. Tronic, Ian Alexander Young, Marko Radosavljevic, John J. Plombon
  • Patent number: 11942378
    Abstract: Techniques related to III-N transistors having improved performance, systems incorporating such transistors, and methods for forming them are discussed. Such transistors include first and second crystalline III-N material layers separated by an intervening layer other than a III-N material such that the first crystalline III-N material layer has a first crystal orientation that is inverted with respect to a second crystal orientation of the second crystalline III-N material layer.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
  • Publication number: 20240097031
    Abstract: In one embodiment, a transistor device includes a gate material layer on a substrate, a ferroelectric (FE) material layer on the gate material, a semiconductor channel material layer on the FE material layer, a first source/drain material on the FE material layer and adjacent the semiconductor channel material layer, and a second source/drain material on the FE material layer and adjacent the semiconductor channel material layer and on an opposite side of the semiconductor channel material layer from the first source/drain material. A first portion of the FE material layer is directly between the gate material and the first source/drain material, and a second portion of the FE material layer is directly between the gate material and the second source/drain material.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Rachel A. Steinhardt, Brandon Holybee, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Ian Alexander Young, Raseong Kim, Carly Rogan, Dominique A. Adams, Arnab Sen Gupta, Marko Radosavljevic, Scott B. Clendenning, Gauri Auluck, Hai Li, Matthew V. Metz, Tristan A. Tronic, I-Cheng Tung
  • Publication number: 20240088153
    Abstract: Gate-all-around integrated circuit structures having depopulated channel structures, and methods of fabricating gate-all-around integrated circuit structures having depopulated channel structures using a selective bottom-up approach, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a substrate. The vertical arrangement of nanowires has one or more active nanowires above one or more oxide nanowires. A first gate stack is over and around the one or more active nanowires. A second gate stack is over and around the one or more oxide nanowires.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Nicole THOMAS, Ehren MANNEBACH, Cheng-Ying HUANG, Marko RADOSAVLJEVIC
  • Patent number: 11923371
    Abstract: Described herein are apparatuses, systems, and methods associated with a voltage regulator circuit that includes one or more thin-film transistors (TFTs). The TFTs may be formed in the back-end of an integrated circuit. Additionally, the TFTs may include one or more unique features, such as a channel layer treated with a gas or plasma, and/or a gate oxide layer that is thicker than in prior TFTs. The one or more TFTs of the voltage regulator circuit may improve the operation of the voltage regulator circuit and free up front-end substrate area for other devices. Other embodiments may be described and claimed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Seung Hoon Sung, Ravi Pillarisetty, Marko Radosavljevic
  • Patent number: 11923370
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Cheng-Ying Huang, Marko Radosavljevic, Christopher M. Neumann, Susmita Ghose, Varun Mishra, Cory Weber, Stephen M. Cea, Tahir Ghani, Jack T. Kavalieros
  • Patent number: 11894465
    Abstract: Deep gate-all-around semiconductor devices having germanium or group 111-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: February 6, 2024
    Assignee: Google LLC
    Inventors: Ravi Pillarisetty, Willy Rachmady, Van H. Le, Seung Hoon Sung, Jessica S. Kachian, Jack T. Kavalieros, Han Wui Then, Gilbert Dewey, Marko Radosavljevic, Benjamin Chu-Kung, Niloy Mukherjee
  • Patent number: 11881511
    Abstract: A transistor is disclosed. The transistor includes a substrate, a superlattice structure that includes a plurality of heterojunction channels, and a gate that extends to one of the plurality of heterojunction channels. The transistor also includes a source adjacent a first side of the superlattice structure and a drain adjacent a second side of the superlattice structure.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 23, 2024
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Rahul Ramaswamy, Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Johann C. Rode, Paul B. Fischer, Walid M. Hafez