Patents by Inventor Marshall L. Sherman

Marshall L. Sherman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10219857
    Abstract: A radio frequency tissue ablation system with a radio frequency generator, the generator comprising a radio frequency source, at least four independently controllable radio frequency outputs, a user interface and a controller configured to delivery radio frequency energy from the radio frequency source to the radio frequency outputs in one of at least two different output configurations in response to a configuration selection made through the user.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: March 5, 2019
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Marshall L. Sherman, Randell L. Werneth, J. Christopher Flaherty
  • Patent number: 10182742
    Abstract: A method and system for assessing electrode-tissue contact before the delivery of ablation energy. The system may include a control unit programmed to determine a difference between a maximum impedance magnitude at a low frequency for a given electrode and an absolute minimum impedance magnitude at the low frequency across all electrodes, determine a difference between a maximum impedance magnitude at a high frequency for a given electrode and an absolute minimum impedance magnitude at the high frequency across all electrodes, and determine a difference between a maximum impedance phase at the high frequency for a given electrode and an absolute minimum impedance phase at the high frequency across all electrodes. Differences may be correlated to one another using a linear model, the results determining electrode-tissue contact status. The results may be displayed in a graphical format for easy communication to the user.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: January 22, 2019
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Steven J. Fraasch, Marshall L. Sherman, Trenton Jay Rehberger, Corinne Weyrauch
  • Patent number: 10166071
    Abstract: A method of assessing a tissue ablation treatment, including positioning a medical device adjacent a target tissue; measuring a first impedance magnitude a first frequency with the medical device; measuring a first impedance phase at a second frequency with the medical device; ablating at least a portion of the target tissue with the medical device; measuring at second impedance magnitude at a third frequency with the medical device; measuring a second impedance phase at a fourth frequency with the medical device; comparing at least one of (i) the first and second impedance magnitudes and (ii) the first and second impedance phases; and providing an indication of the efficacy of the ablation treatment based at least in part on the comparison.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 1, 2019
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Marshall L. Sherman, Catherine R. Condie, Mark T. Stewart
  • Patent number: 10143399
    Abstract: A method and system for assessing electrode-tissue contact before the delivery of ablation energy. The method may generally include determining a difference between a maximum impedance magnitude at a low frequency for a given electrode and an absolute minimum impedance magnitude at the low frequency across all electrodes, determining a difference between a maximum impedance magnitude at a high frequency for a given electrode and an absolute minimum impedance magnitude at the high frequency across all electrodes, and determining a difference between a maximum impedance phase at the high frequency for a given electrode and an absolute minimum impedance phase at the high frequency across all electrodes. These differences may be correlated to one another using a linear model, the results of which determining whether the given electrode is in contact or not in contact with tissue.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: December 4, 2018
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Corinne Weyrauch, Steven J. Fraasch, Trento Jay Rehberger
  • Patent number: 9750570
    Abstract: Systems and methods for assessing tissue contact, including positioning a plurality of electrodes adjacent a tissue region; delivering radiofrequency energy to the plurality of electrodes, wherein the delivered radiofrequency energy is sufficient to ablate at least a portion of the tissue region; obtaining a plurality of impedance measurements from the plurality of electrodes during the delivery of the radiofrequency energy; calculating a change in the impedance measurements for each of the plurality of electrodes over a pre-determined time period; comparing the calculated change for at least one of the plurality of electrodes to the calculated change in at least one other of the plurality of electrode to determine if there is significant variation in the calculated changes; and terminating the delivery of radiofrequency energy to at least one of the plurality if there is significant variation in the calculated changes.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: September 5, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Mark T. Stewart
  • Patent number: 9642675
    Abstract: Devices, systems and methods are disclosed for the ablation of tissue. Embodiments include an ablation catheter which has an array of ablation elements attached to a deployable carrier assembly. The carrier assembly can be constrained within the lumen of a catheter, and deployed to take on an expanded condition.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: May 9, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Randell L. Werneth, Marshall L. Sherman, Thomas M. Castellano, J. Christopher Flaherty, Gary Edward Currie
  • Publication number: 20170095290
    Abstract: Methods and systems for combining ablation therapy with navigation of the ablation device. An ablation system may be configured for use with one of two methods to prevent loss of navigation signals during ablation energy delivery. In the first method, ablation energy signals are filtered from the navigation signal. In the second method, the delivery of ablation energy is sequenced with the delivery of navigation energy such that ablation energy and navigation energy are not delivered at the same time and navigation signals received by the system are time-division multiplexed to reconstruct the navigation signals and determine a location of the device within the patient.
    Type: Application
    Filed: September 27, 2016
    Publication date: April 6, 2017
    Inventors: Marshall L. SHERMAN, Catherine R. CONDIE, Trenton J. REHBERGER, Steven J. FRAASCH, Mark T. STEWART
  • Patent number: 9566113
    Abstract: Devices, systems and methods are disclosed for the ablation of tissue. Embodiments include an ablation catheter that has an array of ablation elements attached to a deployable carrier assembly. The carrier assembly can be constrained within the lumen of a catheter, and deployed to take on an expanded condition. The carrier assembly includes multiple electrodes that are configured to ablate tissue at low power. Additional embodiments include a system that includes an interface unit for delivering one or more forms of energy to the ablation catheter.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: February 14, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Randell L. Werneth, Christopher G. Kunis, J. Christopher Flaherty, Marshall L. Sherman
  • Patent number: 9532828
    Abstract: A medical method, device, and system are provided, including advancing an ablation element of a medical device into contact with tissue to be treated, selecting a power level of energy to ablate the tissue, delivering energy at the selected power level to the ablation element, determining whether the ablation element is in continuous contact with the tissue, and reducing the selected power level when the ablation element ceases to be in continuous contact with the tissue.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: January 3, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Kathryn E. Kasischke, Timothy J. Corvi, Aaron R. Strunk
  • Patent number: 9504518
    Abstract: A medical method, device, and system are provided, including advancing an ablation element of a medical device into contact with tissue to be treated, selecting a power level of energy to ablate the tissue, delivering energy at the selected power level to the ablation element, determining whether the ablation element is in continuous contact with the tissue, and reducing the selected power level when the ablation element ceases to be in continuous contact with the tissue.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: November 29, 2016
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Kathryn E. Kasischke, Timothy J. Corvi, Aaron R. Strunk
  • Publication number: 20160287136
    Abstract: A method and system for assessing electrode-tissue contact before the delivery of ablation energy. The system may include a control unit programmed to determine a difference between a maximum impedance magnitude at a low frequency for a given electrode and an absolute minimum impedance magnitude at the low frequency across all electrodes, determine a difference between a maximum impedance magnitude at a high frequency for a given electrode and an absolute minimum impedance magnitude at the high frequency across all electrodes, and determine a difference between a maximum impedance phase at the high frequency for a given electrode and an absolute minimum impedance phase at the high frequency across all electrodes. Differences may be correlated to one another using a linear model, the results determining electrode-tissue contact status. The results may be displayed in a graphical format for easy communication to the user.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 6, 2016
    Inventors: Catherine R. CONDIE, Steven J. FRAASCH, Marshall L. Sherman, Trenton Jay REHBERGER, Corinne WEYRAUCH
  • Publication number: 20160287137
    Abstract: A method and system for assessing electrode-tissue contact before the delivery of ablation energy. The method may generally include determining a difference between a maximum impedance magnitude at a low frequency for a given electrode and an absolute minimum impedance magnitude at the low frequency across all electrodes, determining a difference between a maximum impedance magnitude at a high frequency for a given electrode and an absolute minimum impedance magnitude at the high frequency across all electrodes, and determining a difference between a maximum impedance phase at the high frequency for a given electrode and an absolute minimum impedance phase at the high frequency across all electrodes. These differences may be correlated to one another using a linear model, the results of which determining whether the given electrode is in contact or not in contact with tissue.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 6, 2016
    Inventors: Catherine R. CONDIE, Marshall L. Sherman, Corinne WEYRAUCH, Steven J. FRAASCH, Trenton Jay REHBERGER
  • Publication number: 20160128603
    Abstract: A method of assessing a tissue ablation treatment, including positioning a medical device adjacent a target tissue; measuring a first impedance magnitude a first frequency with the medical device; measuring a first impedance phase at a second frequency with the medical device; ablating at least a portion of the target tissue with the medical device; measuring at second impedance magnitude at a third frequency with the medical device; measuring a second impedance phase at a fourth frequency with the medical device; comparing at least one of (i) the first and second impedance magnitudes and (ii) the first and second impedance phases; and providing an indication of the efficacy of the ablation treatment based at least in part on the comparison.
    Type: Application
    Filed: January 15, 2016
    Publication date: May 12, 2016
    Inventors: Marshall L. SHERMAN, Catherine R. CONDIE, Mark T. STEWART
  • Publication number: 20160058505
    Abstract: Systems and methods for assessing tissue contact, including positioning an electrode adjacent a tissue region; delivering radiofrequency energy to the electrode, wherein the delivered radiofrequency energy is sufficient to ablate at least a portion of the tissue region; obtaining a plurality of impedance measurements from the electrode during the delivery of the radiofrequency energy; calculating a change in the impedance measurements over a pre-determined time period; and generating an alert if the calculated change is less than a pre-defined value.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 3, 2016
    Inventors: Catherine R. CONDIE, Marshall L. SHERMAN, Mark T. STEWART
  • Patent number: 9265557
    Abstract: A method of assessing a tissue ablation treatment, including positioning a medical device adjacent a target tissue; measuring a first impedance magnitude a first frequency with the medical device; measuring a first impedance phase at a second frequency with the medical device; ablating at least a portion of the target tissue with the medical device; measuring at second impedance magnitude at a third frequency with the medical device; measuring a second impedance phase at a fourth frequency with the medical device; comparing at least one of (i) the first and second impedance magnitudes and (ii) the first and second impedance phases; and providing an indication of the efficacy of the ablation treatment based at least in part on the comparison.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: February 23, 2016
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Marshall L. Sherman, Catherine R. Condie, Mark T. Stewart
  • Patent number: 9216050
    Abstract: A method and system for detecting microbubble formation during a radiofrequency ablation procedure. The method includes measuring an impedance of a pair of electrodes, at least one electrode in the pair of electrodes being coupled to a treatment assembly of a medical device. Radiofrequency ablation energy is transmitted between the pair of electrodes. The transmission of radiofrequency ablation energy between the pair of electrodes is terminated when after a predetermined period of time the measured impedance in either of the electrodes in the pair of electrodes is a predetermined percentage above a measured minimum impedance and a measured power is above a predetermined power threshold. An alert is generated indicating at least one of the formation and release of microbubbles proximate the pair of electrodes.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: December 22, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Mark T. Stewart
  • Publication number: 20150272655
    Abstract: A system and method for preventing unintended tissue damage from the delivery of unintended bipolar radiofrequency energy. The system may include a multi-electrode ablation device and an RF delivery unit. The RF delivery unit may transmit unipolar energy to the plurality of electrodes, the energy being in phase, with all electrodes delivering the same voltage and being activated at the same time to deliver no bipolar energy. Additionally or alternatively, the RF delivery unit may transmit bipolar energy to the electrodes. Here, voltage differences between each pair of adjacent electrodes may be monitored and the level of bipolar energy being delivered may be calculated. The voltage of energy delivered to at least one electrode in each adjacent electrode pair may be adjusted if the amount of delivered bipolar energy exceeds a safety threshold.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 1, 2015
    Applicant: Medtronic Ablation Frontiers, LLC
    Inventors: Catherine R. CONDIE, Marshall L. SHERMAN
  • Patent number: 9113911
    Abstract: A method and system for producing deep lesions without the production of high heat. The method generally includes ablating target tissue cells with a device in communication with an energy generator programmable to ablate tissue using heat energy, electroporation, or a combination thereof. The system generally includes a medical device having a plurality of electrodes at a distal end, and an energy generator in communication with the plurality of electrodes, the generator programmable to deliver alternating current energy between approximately 100 volts RMS and approximately 2000 volts RMS or greater. The generator is further programmable to deliver energy in unipolar mode, bipolar mode, and a combination thereof.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 25, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventor: Marshall L. Sherman
  • Patent number: 9095350
    Abstract: Systems and methods for assessing electrode position, including positioning a plurality of electrodes within a heart and proximate a pulmonary vein; obtaining an impedance measurement from each of the plurality of electrodes; determining whether any of the plurality of electrodes is located within the pulmonary vein based at least in part on the obtained impedance measurements; and generating an indication if at least one of the plurality of electrodes is determined to be located within the pulmonary vein.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: August 4, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Mark T. Stewart
  • Patent number: 9060778
    Abstract: A method and system for detecting a short circuit during a radiofrequency ablation procedure. The method includes measuring an impedance of a pair of electrodes coupled to a treatment assembly of a medical device. Radiofrequency ablation energy is transmitted between the pair of electrodes. The transmission of radiofrequency ablation energy between the pair of electrodes is terminated when after a predetermined period of time the measured impedance in either of the electrodes in the pair of electrodes is below a predetermined threshold impedance value. An alert is generated indicating a short circuit between the pair of electrodes.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: June 23, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman