Patents by Inventor Marshall L. Sherman

Marshall L. Sherman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918280
    Abstract: Methods and systems for combining ablation therapy with navigation of the ablation device. An ablation system may be configured for use with one of two methods to prevent loss of navigation signals during ablation energy delivery. In the first method, ablation energy signals are filtered from the navigation signal. In the second method, the delivery of ablation energy is sequenced with the delivery of navigation energy such that ablation energy and navigation energy are not delivered at the same time and navigation signals received by the system are time-division multiplexed to reconstruct the navigation signals and determine a location of the device within the patient.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: March 5, 2024
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Marshall L. Sherman, Catherine R. Condie, Trenton J. Rehberger, Steven J. Fraasch, Mark T. Stewart
  • Patent number: 11819241
    Abstract: A transseptal crossing needle has an elongate, flexible tubular body, having a proximal end, a distal end and an electrically conductive sidewall defining a central lumen. The distal end has a radially inwardly extending annular recess. The tubular body has a first outside diameter proximally of the annular recess and a second, smaller outside diameter in the recess. An electrode tip has a proximally extending connector residing within the annular recess, and the electrode tip has a third outside diameter distally of the connector, which is greater than the first diameter. An insulation layer encloses the sidewall and the connector, and has an outside diameter approximately the same as the third diameter to provide a uniform outside diameter throughout a distal zone of the needle.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: November 21, 2023
    Assignee: Cross Vascular, Inc.
    Inventors: Steven Howard, Marshall L Sherman, Randell Werneth, Bradley Klos
  • Patent number: 11751905
    Abstract: A self-contained, battery powered transseptal crossing system is disclosed. An elongate, flexible electrically conductive needle body has a proximal end and a distal end. An insulation layer surrounds the sidewall and leaves exposed a distal electrode tip. A generator is configured to deliver RF energy to the electrode tip, and includes a processor configured to take impedance measurements at the tip to confirm contact with the intra atrial septum and/or confirm entry into the left atrium.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: September 12, 2023
    Assignee: Cross Vascular, Inc.
    Inventors: Steven Howard, Marshall L. Sherman, Randell Werneth, Bradley Klos
  • Publication number: 20230093231
    Abstract: A self-contained, battery powered transseptal crossing system is disclosed. An elongate, flexible electrically conductive needle body has a proximal end and a distal end. An insulation layer surrounds the sidewall and leaves exposed a distal electrode tip. A generator is configured to deliver RF energy to the electrode tip, and includes a processos configured to take impedance measurements at the tip to confirm contact with the intra atrial septum and / or confirm entry into the left atrium.
    Type: Application
    Filed: November 29, 2022
    Publication date: March 23, 2023
    Inventors: Steven Howard, Marshall L. Sherman, Randell Werneth, Bradley Klos
  • Patent number: 11583312
    Abstract: A self-contained, battery powered transseptal crossing system is disclosed. An elongate, flexible electrically conductive needle body has a proximal end and a distal end. An insulation layer surrounds the sidewall and leaves exposed a distal electrode tip. A generator is configured to deliver RF energy to the electrode tip, and includes a processor configured to take impedance measurements at the tip to confirm contact with the intra atrial septum and/or confirm entry into the left atrium.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: February 21, 2023
    Assignee: Cross Vascular, Inc.
    Inventors: Steven Howard, Marshall L. Sherman, Randell Werneth, Bradley Klos
  • Publication number: 20220061911
    Abstract: A transseptal crossing needle has an elongate, flexible tubular body, having a proximal end, a distal end and an electrically conductive sidewall defining a central lumen. The distal end has a radially inwardly extending annular recess. The tubular body has a first outside diameter proximally of the annular recess and a second, smaller outside diameter in the recess. An electrode tip has a proximally extending connector residing within the annular recess, and the electrode tip has a third outside diameter distally of the connector, which is greater than the first diameter. An insulation layer encloses the sidewall and the connector, and has an outside diameter approximately the same as the third diameter to provide a uniform outside diameter throughout a distal zone of the needle.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Steven Howard, Marshall L. Sherman, Randell Werneth, Bradley Klos
  • Publication number: 20220061909
    Abstract: A self-contained, battery powered transseptal crossing system is disclosed. An elongate, flexible electrically conductive needle body has a proximal end and a distal end. An insulation layer surrounds the sidewall and leaves exposed a distal electrode tip. A generator is configured to deliver RF energy to the electrode tip, and includes a processor configured to take impedance measurements at the tip to confirm contact with the intra atrial septum and/or confirm entry into the left atrium.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Steven Howard, Marshall L. Sherman, Randell Werneth, Bradley Klos
  • Publication number: 20220061884
    Abstract: A depth sensing dilator system for dilating a penetration in a tissue plane includes an elongate flexible body, having a proximal end and a distal end. The body has a tapered dilator segment, and at least a first electrode on a distal end of the body. The system includes a processor and a user interface output device. The processor is configured to send a first signal to the output device when a change in impedance at the first electrode indicates that the first electrode has reached a predetermined relationship with the tissue plane.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Steven Howard, Marshall L. Sherman, Randell Werneth, Bradley Klos
  • Publication number: 20200315703
    Abstract: Methods and systems for combining ablation therapy with navigation of the ablation device. An ablation system may be configured for use with one of two methods to prevent loss of navigation signals during ablation energy delivery. In the first method, ablation energy signals are filtered from the navigation signal. In the second method, the delivery of ablation energy is sequenced with the delivery of navigation energy such that ablation energy and navigation energy are not delivered at the same time and navigation signals received by the system are time-division multiplexed to reconstruct the navigation signals and determine a location of the device within the patient.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Marshall L. Sherman, Catherine R. Condie, Trenton J. Rehberger, Steven J. Fraasch, Mark T. Stewart
  • Patent number: 10722302
    Abstract: Methods and systems for combining ablation therapy with navigation of the ablation device. An ablation system may be configured for use with one of two methods to prevent loss of navigation signals during ablation energy delivery. In the first method, ablation energy signals are filtered from the navigation signal. In the second method, the delivery of ablation energy is sequenced with the delivery of navigation energy such that ablation energy and navigation energy are not delivered at the same time and navigation signals received by the system are time-division multiplexed to reconstruct the navigation signals and determine a location of the device within the patient.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: July 28, 2020
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Marshall L. Sherman, Catherine R. Condie, Trenton J. Rehberger, Steven J. Fraasch, Mark T. Stewart
  • Patent number: 10219857
    Abstract: A radio frequency tissue ablation system with a radio frequency generator, the generator comprising a radio frequency source, at least four independently controllable radio frequency outputs, a user interface and a controller configured to delivery radio frequency energy from the radio frequency source to the radio frequency outputs in one of at least two different output configurations in response to a configuration selection made through the user.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: March 5, 2019
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Marshall L. Sherman, Randell L. Werneth, J. Christopher Flaherty
  • Patent number: 10182742
    Abstract: A method and system for assessing electrode-tissue contact before the delivery of ablation energy. The system may include a control unit programmed to determine a difference between a maximum impedance magnitude at a low frequency for a given electrode and an absolute minimum impedance magnitude at the low frequency across all electrodes, determine a difference between a maximum impedance magnitude at a high frequency for a given electrode and an absolute minimum impedance magnitude at the high frequency across all electrodes, and determine a difference between a maximum impedance phase at the high frequency for a given electrode and an absolute minimum impedance phase at the high frequency across all electrodes. Differences may be correlated to one another using a linear model, the results determining electrode-tissue contact status. The results may be displayed in a graphical format for easy communication to the user.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: January 22, 2019
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Steven J. Fraasch, Marshall L. Sherman, Trenton Jay Rehberger, Corinne Weyrauch
  • Patent number: 10166071
    Abstract: A method of assessing a tissue ablation treatment, including positioning a medical device adjacent a target tissue; measuring a first impedance magnitude a first frequency with the medical device; measuring a first impedance phase at a second frequency with the medical device; ablating at least a portion of the target tissue with the medical device; measuring at second impedance magnitude at a third frequency with the medical device; measuring a second impedance phase at a fourth frequency with the medical device; comparing at least one of (i) the first and second impedance magnitudes and (ii) the first and second impedance phases; and providing an indication of the efficacy of the ablation treatment based at least in part on the comparison.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 1, 2019
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Marshall L. Sherman, Catherine R. Condie, Mark T. Stewart
  • Patent number: 10143399
    Abstract: A method and system for assessing electrode-tissue contact before the delivery of ablation energy. The method may generally include determining a difference between a maximum impedance magnitude at a low frequency for a given electrode and an absolute minimum impedance magnitude at the low frequency across all electrodes, determining a difference between a maximum impedance magnitude at a high frequency for a given electrode and an absolute minimum impedance magnitude at the high frequency across all electrodes, and determining a difference between a maximum impedance phase at the high frequency for a given electrode and an absolute minimum impedance phase at the high frequency across all electrodes. These differences may be correlated to one another using a linear model, the results of which determining whether the given electrode is in contact or not in contact with tissue.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: December 4, 2018
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Corinne Weyrauch, Steven J. Fraasch, Trento Jay Rehberger
  • Patent number: 9750570
    Abstract: Systems and methods for assessing tissue contact, including positioning a plurality of electrodes adjacent a tissue region; delivering radiofrequency energy to the plurality of electrodes, wherein the delivered radiofrequency energy is sufficient to ablate at least a portion of the tissue region; obtaining a plurality of impedance measurements from the plurality of electrodes during the delivery of the radiofrequency energy; calculating a change in the impedance measurements for each of the plurality of electrodes over a pre-determined time period; comparing the calculated change for at least one of the plurality of electrodes to the calculated change in at least one other of the plurality of electrode to determine if there is significant variation in the calculated changes; and terminating the delivery of radiofrequency energy to at least one of the plurality if there is significant variation in the calculated changes.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: September 5, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Mark T. Stewart
  • Patent number: 9642675
    Abstract: Devices, systems and methods are disclosed for the ablation of tissue. Embodiments include an ablation catheter which has an array of ablation elements attached to a deployable carrier assembly. The carrier assembly can be constrained within the lumen of a catheter, and deployed to take on an expanded condition.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: May 9, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Randell L. Werneth, Marshall L. Sherman, Thomas M. Castellano, J. Christopher Flaherty, Gary Edward Currie
  • Publication number: 20170095290
    Abstract: Methods and systems for combining ablation therapy with navigation of the ablation device. An ablation system may be configured for use with one of two methods to prevent loss of navigation signals during ablation energy delivery. In the first method, ablation energy signals are filtered from the navigation signal. In the second method, the delivery of ablation energy is sequenced with the delivery of navigation energy such that ablation energy and navigation energy are not delivered at the same time and navigation signals received by the system are time-division multiplexed to reconstruct the navigation signals and determine a location of the device within the patient.
    Type: Application
    Filed: September 27, 2016
    Publication date: April 6, 2017
    Inventors: Marshall L. SHERMAN, Catherine R. CONDIE, Trenton J. REHBERGER, Steven J. FRAASCH, Mark T. STEWART
  • Patent number: 9566113
    Abstract: Devices, systems and methods are disclosed for the ablation of tissue. Embodiments include an ablation catheter that has an array of ablation elements attached to a deployable carrier assembly. The carrier assembly can be constrained within the lumen of a catheter, and deployed to take on an expanded condition. The carrier assembly includes multiple electrodes that are configured to ablate tissue at low power. Additional embodiments include a system that includes an interface unit for delivering one or more forms of energy to the ablation catheter.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: February 14, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Randell L. Werneth, Christopher G. Kunis, J. Christopher Flaherty, Marshall L. Sherman
  • Patent number: 9532828
    Abstract: A medical method, device, and system are provided, including advancing an ablation element of a medical device into contact with tissue to be treated, selecting a power level of energy to ablate the tissue, delivering energy at the selected power level to the ablation element, determining whether the ablation element is in continuous contact with the tissue, and reducing the selected power level when the ablation element ceases to be in continuous contact with the tissue.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: January 3, 2017
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Kathryn E. Kasischke, Timothy J. Corvi, Aaron R. Strunk
  • Patent number: 9504518
    Abstract: A medical method, device, and system are provided, including advancing an ablation element of a medical device into contact with tissue to be treated, selecting a power level of energy to ablate the tissue, delivering energy at the selected power level to the ablation element, determining whether the ablation element is in continuous contact with the tissue, and reducing the selected power level when the ablation element ceases to be in continuous contact with the tissue.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: November 29, 2016
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Marshall L. Sherman, Kathryn E. Kasischke, Timothy J. Corvi, Aaron R. Strunk