Patents by Inventor Martin Andrew Green

Martin Andrew Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190207050
    Abstract: A method for forming a photovoltaic device comprising the steps of: providing a first conductive material on a substrate; depositing a continuous layer of a dielectric material less than 10 nm thick on the first conductive material; annealing the first conductive material and the layer of dielectric material; forming a chalcogenide light-absorbing material on the layer of dielectric material; and depositing a second material on the light-absorbing material such that the second material is electrically coupled to the light-absorbing material; wherein the first conductive material and the dielectric material are selected such that, during the step of annealing, a portion of the first conductive material undergoes a chemical reaction to form: a layer of a metal chalcogenide material at the interface between first conductive material and the dielectric material; and a plurality of openings in the layer of dielectric material; the openings being such to allow electrical coupling between the light-absorbing materia
    Type: Application
    Filed: June 21, 2017
    Publication date: July 4, 2019
    Inventors: Xiaojing HAO, Fangyang LIU, Jialiang HUANG, Chang YAN, Kaiwen SUN, Martin Andrew GREEN
  • Patent number: 10115854
    Abstract: The present disclosure provides a method of manufacturing a semiconductor device. Furthermore the present disclosure provides a photovoltaic device and a light emitting diode manufactured in accordance with the method. The method comprises the steps of forming a germanium layer using deposition techniques compatible with high-volume, low-cost manufacturing, such as magnetron sputtering, and exposing the germanium layer to laser light to reduce the amount of defects in the germanium layer. After the method is performed the germanium layer can be used as a virtual germanium substrate for the growth of III-V materials.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: October 30, 2018
    Assignee: NewSouth Innovations Pty Limited
    Inventors: Xiaojing Hao, Martin Andrew Green, Ziheng Liu, Wei Li, Anita Wing Yi Ho-Baillie
  • Publication number: 20170244005
    Abstract: The present disclosure provides a method of manufacturing a semiconductor device. Furthermore the present disclosure provides a photovoltaic device and a light emitting diode manufactured in accordance with the method. The method comprises the steps of forming a germanium layer using deposition techniques compatible with high-volume, low-cost manufacturing, such as magnetron sputtering, and exposing the germanium layer to laser light to reduce the amount of defects in the germanium layer. After the method is performed the germanium layer can be used as a virtual germanium substrate for the growth of III-V materials.
    Type: Application
    Filed: September 4, 2015
    Publication date: August 24, 2017
    Inventors: Xiaojing Hao, Martin Andrew Green, Ziheng Liu, Wei Li, Anita Wing Yi Ho-Baillie
  • Patent number: 9613814
    Abstract: A solar cell has a metal contact formed to electrically contact a surface of semiconductor material forming a photovoltaic junction. The solar cell includes a surface region or regions of heavily doped material and the contact comprises a contact metallisation formed over the heavily doped regions to make contact thereto. Surface keying features are located in the semiconductor material into which the metallisation extends to assist in attachment of the metallisation to the semiconductor material.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: April 4, 2017
    Assignee: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: Alison Maree Wenham, Martin Andrew Green, Stuart Ross Wenham
  • Publication number: 20160190377
    Abstract: The present disclosure provides a photovoltaic device that has a photon receiving surface and a first single homojunction silicon solar cell. The first single homojunction silicon solar cell comprises two doped silicon portions with opposite polarities and has a first bandgap. The photovoltaic device further comprises a second solar cell structure that has an absorber material with a Perovskite structure and has a second bandgap that is larger than the first bandgap. The photovoltaic device is arranged such that each of the first and second solar cells absorb a portion of the photons that are received by the photon receiving surface.
    Type: Application
    Filed: August 6, 2014
    Publication date: June 30, 2016
    Applicant: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventor: Martin Andrew Green
  • Patent number: 8912430
    Abstract: A solar conversion assembly comprises: a) a type III-V multiple cell stack solar cell device b) a silicon solar cell device c) a band splitting device located relative to the type III-V solar cell device and the silicon solar cell device. The band splitting device splits light falling on the splitting device into a plurality of wavelength bands and directs a first of said bands to the type III-V solar cell device and the second of said bands to the silicon solar cell device.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: December 16, 2014
    Assignee: Newsouth Innovations Pty Limited
    Inventor: Martin Andrew Green
  • Publication number: 20130056045
    Abstract: A solar conversion assembly comprises: a) a type III-V multiple cell stack solar cell device b) a silicon solar cell device c) a band splitting device located relative to the type III-V solar cell device and the silicon solar cell device. The band splitting device splits light falling on the splitting device into a plurality of wavelength bands and directs a first of said bands to the type III-V solar cell device and the second of said bands to the silicon solar cell device.
    Type: Application
    Filed: February 11, 2011
    Publication date: March 7, 2013
    Inventor: Martin Andrew Green
  • Publication number: 20120222737
    Abstract: A method of fabricating a hot carrier energy conversion structure, and a hot carrier energy conversion structure. The method comprises forming an energy selective contact ESC comprising a tunnelling layer; forming a carrier generation layer on the ESC; and forming a semiconductor contact without a tunnelling layer on the carrier generation layer.
    Type: Application
    Filed: July 2, 2010
    Publication date: September 6, 2012
    Applicants: Toyota Jidosha Kabushiki Kaisha, NewSouth Innovations Pty Limited
    Inventors: Gavin John Conibeer, Santosh Shrestha, Dirk Konig, Martin Andrew Green, Tomonori Nagashima, Yasuhiko Takeda, Tadashi Ito, Tomoyoshi Motohiro
  • Publication number: 20120132270
    Abstract: A solar cell has a metal contact formed to electrically contact a surface of semiconductor material forming a photo-voltaic junction. The solar cell includes a surface region or regions of heavily doped material and the contact comprises a contact metallisation formed over the heavily doped regions to make contact thereto. Surface keying features are located in the semiconductor material into which the metallisation extends to assist in attachment of the metallisation to the semiconductor material.
    Type: Application
    Filed: February 24, 2010
    Publication date: May 31, 2012
    Inventors: Alison Maree Wenham, Martin Andrew Green, Stuart Ross Wenham
  • Publication number: 20080251116
    Abstract: An artificial amorphous semiconductor material, and a junction made from the material, has a plurality of crystalline semiconductor material quantum dots substantially uniformly distributed and regularly spaced in three dimensions through a matrix of dielectric material or thin layers of dielectric materials. The material is formed by first forming a plurality of layers of dielectric material comprising a compound of a semiconducting material, and forming alternating layers as layers of stoichiometric dielectric material and layers of semiconductor rich dielectric material respectively. The material is then heated causing quantum dots to form in the semiconductor rich layers of dielectric material in a uniform and regularly spaced distribution in three dimensions through the dielectric material.
    Type: Application
    Filed: April 29, 2005
    Publication date: October 16, 2008
    Inventor: Martin Andrew Green
  • Patent number: 6624009
    Abstract: A method of crystallizing amorphous silicon on a glass substrate relies on deliberately heating the glass substrate above its strain point during processing, making low temperature glasses, such as soda lime glasses, ideal for such use. Since the glass is plastic above this temperature while the silicon remains elastic, the glass is forced to conform to the shape defined by the silicon once this temperature is exceeded. This process relaxes any stresses which might otherwise be created in the glass or film, as long as the glass temperature is above the strain point. As the glass temperature is reduced back below the strain point, the glass becomes progressively more rigid and stresses will begin to build up in the film and glass. When cooled slowly, the stress in the film and the glass can be controlled by appropriate selection of a thermal expansion coefficient of the glass relative to that of silicon, particularly those with linear expansion coefficients in the range 4-10 ppm/° C.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: September 23, 2003
    Assignee: Pacific Solar Pty Limited
    Inventors: Martin Andrew Green, Zhengrong Shi, Paul Alan Basore, JingJia Ji
  • Patent number: 6538195
    Abstract: A thin film silicon solar cell is provided on a glass substrate, the glass having a textured surface, including larger scale surface features and smaller scale surface features. Over the surface is deposited a thin barrier layer which also serves as an anti-reflection coating. The barrier layer may be a silicon nitride layer for example and will be 70 nm±20% in order to best achieve its anti-reflection function. Over the barrier layer is formed an essentially conformal silicon film having a thickness which is less than the dimensions of the larger scale features of the glass surface and of a similar dimension to the smaller scale features of the glass surface.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: March 25, 2003
    Assignee: Pacific Solar Pty Limited
    Inventors: Zhengrong Shi, Stuart Ross Wenham, Martin Andrew Green, Paul Alan Basore, Jing Jia Ji
  • Patent number: 6429037
    Abstract: A method of making contacts on solar cells is disclosed. The front surface (41) of a substrate (11) is coated with a dielectric or surface masking layer or layers (12) that contains dopants of the opposite polarity to those used in the surface of the substrate material (11). The dielectric layers or layers (12) not only acts as a diffusion source for forming the emitter for the underlying substrate (11) when heat treated, but also acts as a metallization mask during the subsequent electroless plating with solutions such as nickel and copper. The mask may be formed by laser scribing (14) which melts the layer or layers (12), thereby more heavily doping and exposing zones (15) where metallization is required.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: August 6, 2002
    Assignee: Unisearch Limited
    Inventors: Stuart Ross Wenham, Martin Andrew Green
  • Patent number: 6210991
    Abstract: The method is provided for contact formation in semiconductor devices. The method involves forming an insulating layer over an active region to be contacted to, forming holes or openings in the insulating layer to expose the active region and forming an aluminium layer over the insulating layer. A source of non-crystalline semiconductor material or damaged crystalline material is located in contact with the aluminium layer such that the non-crystalline or damaged crystalline material is dissolved in the aluminium layer and redeposited on the surface of the semiconductor material to be contacted to. The semiconductor material is deposited by solid phase epitaxial growth and carries with it, aluminium atoms which leave the semiconductor material as heavily doped p-type material.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: April 3, 2001
    Assignee: Unisearch Limited
    Inventors: Stuart Ross Wenham, Martin Andrew Green
  • Patent number: 6162658
    Abstract: The present invention makes use of geometry of grooves formed in a substrate, to allow a dielectric layer to be deposited with some regions of the grooves having a substantially thinner layer deposited than top surfaces of the substrate. These regions of reduced thickness dielectric within the grooves are then prematurely etched by an appropriate chemical, or other, etchant capable of controllably etching away the dielectric layer, with the result that in these regions the silicon surface can be exposed and plated by a metallization while the top surface remains protected by the dielectric material. The remaining dielectric material can optionally be required to act as an anti-reflective coating. The invention is applicable in making buried contact solar cells.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: December 19, 2000
    Assignee: Unisearch Limited
    Inventors: Martin Andrew Green, Stuart Ross Wenham, Christiana B Honsberg
  • Patent number: 5990415
    Abstract: A multilayer solar cell with bypass diodes includes a stack of alternating p and n type semiconductor layers 10, 11, 12, 13, 14 arranged to form a plurality of rectifying photovoltaic junctions 15, 16, 17, 18. Contact is made to underlying layers by way of a buried contact structure comprising grooves extending down through all of the active layers, the walls of each groove being doped 33, 34 with n-or p-type impurities depending upon the layers to which the respective contact is to be connected and the grooves being filled with metal contact material 31, 32. One or more bypass diodes are provided by increasing the doping levels on either side 10, 13 of one or more portions of the junctions 16 of the cell such that quantum mechanical tunnelling provides a reverse bias characteristic whereby conduction occurs under predetermined reverse bias conditions. Ideally, the doping levels in the bypass diodes is 10.sup.18 atoms/cm.sup.3 or greater and the junction area is small.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: November 23, 1999
    Assignee: Pacific Solar Pty Ltd
    Inventors: Martin Andrew Green, Stuart Ross Wenham
  • Patent number: 5942050
    Abstract: A semiconductor structure and method of forming the structure, where a supporting substrate or superstrate provides the mechanical strength to support overlying thin active regions. The thin dielectric layer deposited over the substrate or superstrate serves to isolate the deposited layers from the substrate from optical, metallurgical and/or chemical perspectives. A seeding layer is then deposited, the seeding layer being of n-type silicon with appropriate treatments to give the desired large grain size. This layer may be crystallized as it is deposited, or may be deposited in amorphous form and then crystallized with further processing. A stack of alternating polarity layers of amorphous silicon or silicon alloy incorporating n-type or p-type dopants in the alternating layers is then deposited over the seeding layer. Solid phase crystallization is then performed to give the desired grain size of 3 .mu.m or larger which can be achieved by extended heating of the layers at low temperature.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: August 24, 1999
    Assignee: Pacific Solar Pty Ltd.
    Inventors: Martin Andrew Green, Stuart Ross Wenham, Zhengrong Shi
  • Patent number: 5797998
    Abstract: A multilayer solar cell structure includes a stack of alternating p-type and n-type semiconductor layers arranged to form a plurality of rectifying photovoltaic junctions. Low-cost cells are manufactured from low-quality material which is optimized by employing very high doping levels in thin layers. Typically, the doping levels are greater than 10.sup.17 atoms/cm.sup.3, and the thickness of the layers is related to carrier diffusion length in thickness. Contact is made to underlying layers by way of a buried contact structure comprising grooves extending down through all of the active layers, the walls of each groove being doped with n- or p-type impurities depending upon the layers to which the respective contact is to be connected and the grooves being filled or partly filled with metal contact material.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: August 25, 1998
    Assignee: Pacific Solar Pty. Limited
    Inventors: Stuart Ross Wenham, Martin Andrew Green
  • Patent number: 5646397
    Abstract: A combination comprises a device for receiving and for directing incoming light in a three dimensional manner to at least one predetermined location together with a solar cell. The device has two light reflecting surfaces and a total internal reflection surface. In operation, the total internal reflection surface transmits the incoming light into the device and totally internally reflects the light reflected from the surface which is incident at its surface at an angle within the range for total internal reflection. The reflection surfaces are operatively disposed with respect to one another so as to perform the function of a receiver/director by directing incoming light in a three dimensional manner to the rear surface of the solar cell.
    Type: Grant
    Filed: August 7, 1996
    Date of Patent: July 8, 1997
    Assignee: Unisearch Limited
    Inventors: Stewart Ross Wenham, Martin Andrew Green