Patents by Inventor Martin B. Wolk

Martin B. Wolk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200392782
    Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
  • Patent number: 10794114
    Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: October 6, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
  • Publication number: 20200157878
    Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
  • Patent number: 10656312
    Abstract: Microoptical layers, glazing units including the microoptical layers, and transfer tapes that may be used to provide the microoptical layers are provided. The transfer tape includes a removable template layer having a structured surface, a backfill layer having a first surface disposed on at least a portion of the structured surface of the template layer, and a microstructured surface opposite the structured surface. The microstructured surface together with a layer disposed on the microstructured surface is an anisotropic diffuser.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: May 19, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Justin P. Meyer, Martin B. Wolk, Thomas R. Hoffend, Jr., Steven J. McMan, Daniel W. Hennen, Evan L. Schwartz, Michael Benton Free, Manoj Nirmal, Bing Hao, John F. Reed, Charles A. Marttila
  • Patent number: 10618247
    Abstract: The present disclosure relates to transfer tapes, segmented and non-segmented which include at least one graphics layer. The transfer tapes include a removable template layer, a transfer layer which includes a backfill layer, having at least one first graphics layer, and an adhesive layer. Segmented transfer tapes further at least one transferable segment, at least one non-transferable segment in the segmented transfer tape and include at least one kerf. The present disclosure also provides optical assemblies, e.g. micro-optical assemblies, which may be fabricated from the transfer tapes which include at least one graphics layer. The present disclosure also provides methods of forming the transfer tapes and methods of making the micro optical assemblies.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: April 14, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson, Terry O. Collier
  • Publication number: 20200087981
    Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 19, 2020
    Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
  • Patent number: 10590697
    Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: March 17, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
  • Patent number: 10513881
    Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: December 24, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
  • Patent number: 10495801
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: December 3, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Publication number: 20190358947
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
  • Patent number: 10475858
    Abstract: The present disclosure describes nanostructured light extraction color filter laminates, and articles and methods of using nanostructured light extraction color filter laminates for the fabrication of an OLED including a nanostructure, using lamination techniques. Nanostructured OLED devices can exhibit enhanced light extraction efficiency. The methods involve transfer and/or replication of a film, layer, or coating in order to form a nanostructured surface that is in optical contact with the emitting surface of an OLED in, for example, a top emitting or a bottom emitting active matrix OLED (TE-AMOLED or BE-AMOLED) device. The articles having enhanced light extraction efficiency can be of particular use in color-by-white (CBW) OLED displays, which use white-light spectrum OLEDs with a color filter array.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: November 12, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Seong Taek Lee, Michael Benton Free, Nicholas C. Erickson
  • Patent number: 10435590
    Abstract: The present disclosure relates to segmented transfer tapes useful in the transfer of only a portion of the segments of the transfer tapes and methods of making thereof. The segmented transfer tapes include a removable template layer having a structured surface; a transfer layer comprising a backfill layer, wherein the backfill layer has a structured first major surface, and an adhesive layer; at least one transferable segment formed in the transfer layer; at least one non-transferable segment formed in the transfer layer, the at least one non-transferable segment includes an adhesive surface, wherein a passivating layer is disposed on at least a portion of the adhesive surface of the at least one non-transferrable segment; and at least one kerf extending from the first major surface of the adhesive layer and into at least a portion of the removable template layer. The present disclosure also provides micro-optical assemblies and methods of making micro-optical assemblies from the segmented transfer tapes.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: October 8, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson
  • Patent number: 10436946
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films that include antireflective structures are disclosed.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: October 8, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Justin P. Meyer, Olester Benson, Jr., Terry O. Collier, Mieczyslaw H. Mazurek, Martin B. Wolk, Moses M. David
  • Publication number: 20190284443
    Abstract: Composite structures that include a first layer including a silicone block copolymer; a transition layer, the transition layer having a first surface contiguous with the first layer and a second opposing surface, the transition layer formed from the silicone block copolymer of the first layer; and a glass-like layer contiguous with the second surface of the transition layer, at least a portion of the glass-like layer formed from the transition layer.
    Type: Application
    Filed: September 27, 2016
    Publication date: September 19, 2019
    Inventors: Audrey A. Sherman, Claire Hartmann-Thompson, Caleb T. Nelson, John P. Baetzold, Trenton J. Wolter, Martin B. Wolk
  • Patent number: 10414145
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films (100) may include a plurality of co-extensive electrical protolayers (22, 23, 24) forming an electrical protolayer stack (20), at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: September 17, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
  • Publication number: 20190204493
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Application
    Filed: March 8, 2019
    Publication date: July 4, 2019
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Publication number: 20190184422
    Abstract: An organofluorine coating on a major surface of a substrate, wherein the organofluorine coating has a surface composition of about 5 at % to about 15 at % oxygen and about 30 at % to about 50 at % fluorine.
    Type: Application
    Filed: June 15, 2017
    Publication date: June 20, 2019
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ta-Hua Yu, Moses M. David, Kevin D. Hagen, Samuel J. Carpenter, Eric J. Hanson, Martin B. Wolk, Steven J. McMan, Evan L. Schwartz
  • Patent number: 10254460
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: April 9, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Patent number: 10253551
    Abstract: Pillar delivery films for vacuum insulated glass units are disclosed. The delivery films include a support film or pocket tape, a sacrificial material on the support film, and a plurality of pillars. The pillars are at least partially embedded in the sacrificial material or formed within sacrificial material molds, and the sacrificial material is capable of being removed while leaving the pillars substantially intact. Methods of transferring pillars to a substrate using the pillar delivery films are disclosed. In order to make an insulated glass unit, the delivery films are laminated to a receptor such as a glass pane, and the support film and sacrificial material are removed to leave the pillars remaining on the glass.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 9, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Martin B. Wolk, Terry O. Collier, Margaret M. Vogel-Martin
  • Patent number: 10220600
    Abstract: Transfer films comprising a carrier film, a sacrificial template layer deposed on the carrier film and comprising reentrant forming template features, and a thermally stable backfill layer having a first surface conforming to the reentrant forming template features and forming reentrant features and an opposing planar second surface; and methods of making transfer films are disclosed.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: March 5, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Olester Benson, Jr., Terry O. Collier, Michael Benton Free, Adam J. Meuler, Justin P. Meyer, Evan L. Schwartz