Patents by Inventor Martin B. Wolk
Martin B. Wolk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200392782Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: August 28, 2020Publication date: December 17, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10794114Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: November 14, 2019Date of Patent: October 6, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Publication number: 20200157878Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: January 23, 2020Publication date: May 21, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10656312Abstract: Microoptical layers, glazing units including the microoptical layers, and transfer tapes that may be used to provide the microoptical layers are provided. The transfer tape includes a removable template layer having a structured surface, a backfill layer having a first surface disposed on at least a portion of the structured surface of the template layer, and a microstructured surface opposite the structured surface. The microstructured surface together with a layer disposed on the microstructured surface is an anisotropic diffuser.Type: GrantFiled: June 22, 2016Date of Patent: May 19, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Justin P. Meyer, Martin B. Wolk, Thomas R. Hoffend, Jr., Steven J. McMan, Daniel W. Hennen, Evan L. Schwartz, Michael Benton Free, Manoj Nirmal, Bing Hao, John F. Reed, Charles A. Marttila
-
Patent number: 10618247Abstract: The present disclosure relates to transfer tapes, segmented and non-segmented which include at least one graphics layer. The transfer tapes include a removable template layer, a transfer layer which includes a backfill layer, having at least one first graphics layer, and an adhesive layer. Segmented transfer tapes further at least one transferable segment, at least one non-transferable segment in the segmented transfer tape and include at least one kerf. The present disclosure also provides optical assemblies, e.g. micro-optical assemblies, which may be fabricated from the transfer tapes which include at least one graphics layer. The present disclosure also provides methods of forming the transfer tapes and methods of making the micro optical assemblies.Type: GrantFiled: June 13, 2016Date of Patent: April 14, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson, Terry O. Collier
-
Publication number: 20200087981Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: November 14, 2019Publication date: March 19, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10590697Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: January 22, 2015Date of Patent: March 17, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10513881Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: January 22, 2015Date of Patent: December 24, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10495801Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.Type: GrantFiled: March 8, 2019Date of Patent: December 3, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
-
Publication number: 20190358947Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.Type: ApplicationFiled: August 6, 2019Publication date: November 28, 2019Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
-
Patent number: 10475858Abstract: The present disclosure describes nanostructured light extraction color filter laminates, and articles and methods of using nanostructured light extraction color filter laminates for the fabrication of an OLED including a nanostructure, using lamination techniques. Nanostructured OLED devices can exhibit enhanced light extraction efficiency. The methods involve transfer and/or replication of a film, layer, or coating in order to form a nanostructured surface that is in optical contact with the emitting surface of an OLED in, for example, a top emitting or a bottom emitting active matrix OLED (TE-AMOLED or BE-AMOLED) device. The articles having enhanced light extraction efficiency can be of particular use in color-by-white (CBW) OLED displays, which use white-light spectrum OLEDs with a color filter array.Type: GrantFiled: June 7, 2018Date of Patent: November 12, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Seong Taek Lee, Michael Benton Free, Nicholas C. Erickson
-
Patent number: 10435590Abstract: The present disclosure relates to segmented transfer tapes useful in the transfer of only a portion of the segments of the transfer tapes and methods of making thereof. The segmented transfer tapes include a removable template layer having a structured surface; a transfer layer comprising a backfill layer, wherein the backfill layer has a structured first major surface, and an adhesive layer; at least one transferable segment formed in the transfer layer; at least one non-transferable segment formed in the transfer layer, the at least one non-transferable segment includes an adhesive surface, wherein a passivating layer is disposed on at least a portion of the adhesive surface of the at least one non-transferrable segment; and at least one kerf extending from the first major surface of the adhesive layer and into at least a portion of the removable template layer. The present disclosure also provides micro-optical assemblies and methods of making micro-optical assemblies from the segmented transfer tapes.Type: GrantFiled: June 13, 2016Date of Patent: October 8, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson
-
Patent number: 10436946Abstract: Transfer films, articles made therewith, and methods of making and using transfer films that include antireflective structures are disclosed.Type: GrantFiled: April 21, 2017Date of Patent: October 8, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Justin P. Meyer, Olester Benson, Jr., Terry O. Collier, Mieczyslaw H. Mazurek, Martin B. Wolk, Moses M. David
-
Publication number: 20190284443Abstract: Composite structures that include a first layer including a silicone block copolymer; a transition layer, the transition layer having a first surface contiguous with the first layer and a second opposing surface, the transition layer formed from the silicone block copolymer of the first layer; and a glass-like layer contiguous with the second surface of the transition layer, at least a portion of the glass-like layer formed from the transition layer.Type: ApplicationFiled: September 27, 2016Publication date: September 19, 2019Inventors: Audrey A. Sherman, Claire Hartmann-Thompson, Caleb T. Nelson, John P. Baetzold, Trenton J. Wolter, Martin B. Wolk
-
Patent number: 10414145Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films (100) may include a plurality of co-extensive electrical protolayers (22, 23, 24) forming an electrical protolayer stack (20), at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.Type: GrantFiled: August 26, 2015Date of Patent: September 17, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
-
Publication number: 20190204493Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.Type: ApplicationFiled: March 8, 2019Publication date: July 4, 2019Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
-
Publication number: 20190184422Abstract: An organofluorine coating on a major surface of a substrate, wherein the organofluorine coating has a surface composition of about 5 at % to about 15 at % oxygen and about 30 at % to about 50 at % fluorine.Type: ApplicationFiled: June 15, 2017Publication date: June 20, 2019Applicant: 3M INNOVATIVE PROPERTIES COMPANYInventors: Ta-Hua Yu, Moses M. David, Kevin D. Hagen, Samuel J. Carpenter, Eric J. Hanson, Martin B. Wolk, Steven J. McMan, Evan L. Schwartz
-
Patent number: 10254460Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.Type: GrantFiled: July 9, 2018Date of Patent: April 9, 2019Assignee: 3M Innovative Properties CompanyInventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
-
Patent number: 10253551Abstract: Pillar delivery films for vacuum insulated glass units are disclosed. The delivery films include a support film or pocket tape, a sacrificial material on the support film, and a plurality of pillars. The pillars are at least partially embedded in the sacrificial material or formed within sacrificial material molds, and the sacrificial material is capable of being removed while leaving the pillars substantially intact. Methods of transferring pillars to a substrate using the pillar delivery films are disclosed. In order to make an insulated glass unit, the delivery films are laminated to a receptor such as a glass pane, and the support film and sacrificial material are removed to leave the pillars remaining on the glass.Type: GrantFiled: September 14, 2017Date of Patent: April 9, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Terry O. Collier, Margaret M. Vogel-Martin
-
Patent number: 10220600Abstract: Transfer films comprising a carrier film, a sacrificial template layer deposed on the carrier film and comprising reentrant forming template features, and a thermally stable backfill layer having a first surface conforming to the reentrant forming template features and forming reentrant features and an opposing planar second surface; and methods of making transfer films are disclosed.Type: GrantFiled: January 9, 2015Date of Patent: March 5, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Olester Benson, Jr., Terry O. Collier, Michael Benton Free, Adam J. Meuler, Justin P. Meyer, Evan L. Schwartz