Patents by Inventor Martin B. Wolk

Martin B. Wolk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190016086
    Abstract: Article comprising a first, microstructured layer comprising a first material, and having first and second opposed major surfaces, the first major surface being a microstructured surface, and the microstructured surface having peaks and valleys, wherein the peaks are microstructural features each having a height defined by the distance between the peak of the respective microstructural feature and an adjacent valley; and a second layer comprising at least one of a crosslinkable or crosslinked composition, wherein at least a portion of the second major surface of the second layer is directly attached to at least a portion of the first major surface of the first, microstructured layer. Articles described herein are useful, for example, for optical film applications. For example.
    Type: Application
    Filed: December 22, 2016
    Publication date: January 17, 2019
    Inventors: Jeffrey L. Solomon, Michael Benton Free, Steven J. McMan, Martin B. Wolk, Elisa M. Cross
  • Publication number: 20180354225
    Abstract: Article comprising a first microstructured layer comprising a first material, and having first and second opposed major surfaces, the first material comprising at least one of a crosslinkable or crosslinked composition, the first major surface being a microstructured surface; a second layer comprising an adhesive material, and having first and second opposed major surfaces, wherein at least a portion of the second major surface of the second layer is directly attached to at least a portion of the first major microstructured surface of the first layer; and a third polymeric layer comprising a third material, and having first and second opposed major surfaces, wherein at least a portion of the second major surface of the third polymeric layer is directly attached to at least a portion of the first major surface of the second layer, and wherein any polymeric material attached either directly or indirectly to the second major surface of the first layer contains no more than 75 percent by volume collectively of no
    Type: Application
    Filed: December 22, 2016
    Publication date: December 13, 2018
    Inventors: Jeffrey L. Solomon, Michael Benton Free, Steven J. McMan, Martin B. Wolk, Elisa M. Cross
  • Publication number: 20180351119
    Abstract: Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill later is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.
    Type: Application
    Filed: July 26, 2018
    Publication date: December 6, 2018
    Inventors: Martin B. Wolk, Michael Benton Free, Margaret M. Vogel-Martin, Evan L. Schwartz, Mieczyslaw H. Mazurek, Terry O. Collier
  • Publication number: 20180313992
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Application
    Filed: July 9, 2018
    Publication date: November 1, 2018
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Publication number: 20180294317
    Abstract: The present disclosure describes nanostructured light extraction color filter laminates, and articles and methods of using nanostructured light extraction color filter laminates for the fabrication of an OLED including a nanostructure, using lamination techniques. Nanostructured OLED devices can exhibit enhanced light extraction efficiency. The methods involve transfer and/or replication of a film, layer, or coating in order to form a nanostructured surface that is in optical contact with the emitting surface of an OLED in, for example, a top emitting or a bottom emitting active matrix OLED (TE-AMOLED or BE-AMOLED) device. The articles having enhanced light extraction efficiency can be of particular use in color-by-white (CBW) OLED displays, which use white-light spectrum OLEDs with a color filter array.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 11, 2018
    Inventors: Martin B. Wolk, Seong Taek Lee, Michael Benton Free, Nicholas C. Erickson
  • Patent number: 10052856
    Abstract: A method of making patterned structured solid surfaces is disclosed that includes filling a structured template with backfill material to produce a structured transfer film, patternwise curing the backfill material to produce cured areas and uncured areas in the structured transfer film, and laminating the structured transfer film to a receptor substrate. The structured template is capable of being removed to form structured and unstructured backfill layers. The structured and unstructured backfill layers may then be blanket cured. The backfill layer can include at least two different materials, one of which can be an adhesion promotion layer. In some embodiments the backfill layer includes a silsesquioxane such as polyvinyl silsesquioxane. The structured transfer film is a stable intermediate that can be covered temporarily with a release liner for storage and handling.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: August 21, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Michael Benton Free, Martin B. Wolk, Terry O. Collier, Mieczyslaw H. Mazurek, Evan L. Schwartz
  • Publication number: 20180203168
    Abstract: The present disclosure relates to micro-optical assemblies containing at least one optical element adhered to a receptor substrate, e.g. a transparent receptor substrate, the receptor substrate contains at least one graphics layer. The micro-optical assemblies include both functional micro-optical structures that can alter, for example, incident light, and a graphic layer, which includes at least one graphic, e.g. a graphic design, which may include color, patterns, imagery, indicia and the like. The combination of the micro-optical elements with the graphic of the graphics layer can provide unique light altering assemblies that have graphic designs that may be functional, e.g. to display a message, and/or have aesthetic value. The micro-optical assemblies of the present disclosure are useful in a variety of applications which include, but are not limited to, display and graphics applications and architectural glass applications.
    Type: Application
    Filed: June 14, 2016
    Publication date: July 19, 2018
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson, Terry O. Collier
  • Patent number: 10018762
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: July 10, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Publication number: 20180169996
    Abstract: The present disclosure relates to transfer tapes, segmented and non-segmented which include at least one graphics layer. The transfer tapes include a removable template layer, a transfer layer which includes a backfill layer, having at least one first graphics layer, and an adhesive layer. Segmented transfer tapes further at least one transferable segment, at least one non-transferable segment in the segmented transfer tape and include at least one kerf. The present disclosure also provides optical assemblies, e.g. micro-optical assemblies, which may be fabricated from the transfer tapes which include at least one graphics layer. The present disclosure also provides methods of forming the transfer tapes and methods of making the micro optical assemblies.
    Type: Application
    Filed: June 13, 2016
    Publication date: June 21, 2018
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson, Terry O. Collier
  • Publication number: 20180164475
    Abstract: Microoptical layers, glazing units including the microoptical layers, and transfer tapes that may be used to provide the microoptical layers are provided. The transfer tape includes a removable template layer having a structured surface, a backfill layer having a first surface disposed on at least a portion of the structured surface of the template layer, and a microstructured surface opposite the structured surface. The microstructured surface together with a layer disposed on the microstructured surface is an anisotropic diffuser.
    Type: Application
    Filed: June 22, 2016
    Publication date: June 14, 2018
    Inventors: Justin P. Meyer, Martin B. Wolk, Thomas R. Hoffend, Jr., Steven J. McMan, Daniel W. Hennen, Evan L. Schwartz, Michael Benton Free, Manoj Nirmal, Bing Hao, John F. Reed, Charles A. Marttila
  • Patent number: 9997573
    Abstract: The present disclosure describes nano-structured light extraction color filter laminates, and articles and methods of using nanostructured light extraction color filter laminates for the fabrication of an OLED including a nanostructure, using lamination techniques. Nanostructured OLED devices can exhibit enhanced light extraction efficiency. The methods involve transfer and/or replication of a film, layer, or coating in order to form a nanostructured surface that is in optical contact with the emitting surface of an OLED in, for example, a top emitting or a bottom emitting active matrix OLED (TE-AMOLED or BE-AMOLED) device. The articles having enhanced light extraction efficiency can be of particular use in color-by-white (CBW) OLED displays, which use white-light spectrum OLEDs with a color filter array.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: June 12, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Seong Taek Lee, Michael Benton Free, Nicholas C. Erickson
  • Publication number: 20180155578
    Abstract: The present disclosure relates to segmented transfer tapes useful in the transfer of only a portion of the segments of the transfer tapes and methods of making thereof. The segmented transfer tapes include a removable template layer having a structured surface; a transfer layer comprising a backfill layer, wherein the backfill layer has a structured first major surface, and an adhesive layer; at least one transferable segment formed in the transfer layer; at least one non-transferable segment formed in the transfer layer, the at least one non-transferable segment includes an adhesive surface, wherein a passivating layer is disposed on at least a portion of the adhesive surface of the at least one non-transferrable segment; and at least one kerf extending from the first major surface of the adhesive layer and into at least a portion of the removable template layer. The present disclosure also provides micro-optical assemblies and methods of making micro-optical assemblies from the segmented transfer tapes.
    Type: Application
    Filed: June 13, 2016
    Publication date: June 7, 2018
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson
  • Patent number: 9970614
    Abstract: Transfer tapes and methods of making transfer tapes are described. In one aspect, the transfer tape comprises a template layer having a structured surface; a backfill layer disposed on at least a portion of the template layer, the backfill layer having a microstructured surface opposite the structured surface; and a layer disposed adjacent the microstructured surface, wherein the layer disposed adjacent the microstructured surface has a refractive index that differs from the backfill layer. The microstructured surface together with the adjacent layer functions as a diffusive layer, or in other words a diffusive interface. Also described are microoptical glazing and methods of making microoptical glazing as well as insulated glazing units and methods of making insulated glazing units.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: May 15, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Justin P. Meyer, Martin B. Wolk, Thomas R. Hoffend, Jr., Steven J. McMan, Daniel W. Hennen, Evan L. Schwartz
  • Publication number: 20180128954
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Application
    Filed: January 8, 2018
    Publication date: May 10, 2018
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Patent number: 9918370
    Abstract: An electroluminescent device and a method of making an electroluminescent device that includes one or more optical spacers are disclosed. In one embodiment, the method includes forming an electroluminescent element on a substrate. The method further includes selectively thermally transferring an optical spacer.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: March 13, 2018
    Assignee: Samsung Display Co., Ltd.
    Inventors: Martin B. Wolk, Robert L. Brott, Thomas R. Hoffend, Jr.
  • Patent number: 9878954
    Abstract: Vacuum insulated glass units having layered pillars. The glass units include two glass panes and an edge seal between the glass panes with a substantial vacuum gap between them. A plurality of pillars are located between the glass panes as spacers to maintain the vacuum gap. The pillars have a sintered ceramic, alpha alumina, or zirconia body with a tapered sidewall and a functional layer on a surface of the body.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: January 30, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Margaret M. Vogel-Martin, Martin B. Wolk, Michael Benton Free, Olester Benson, Jr., Evan L. Schwartz, Robert F. Kamrath, Brant U. Kolb, Kathleen M. Humpal, Mark J. Hendrickson
  • Patent number: 9864120
    Abstract: A multilayer optical film (130) has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film Heating elements (122) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered regions of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered regions to pattern the film The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: January 9, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Publication number: 20180002973
    Abstract: Pillar delivery films for vacuum insulated glass units are disclosed. The delivery films include a support film or pocket tape, a sacrificial material on the support film, and a plurality of pillars. The pillars are at least partially embedded in the sacrificial material or formed within sacrificial material molds, and the sacrificial material is capable of being removed while leaving the pillars substantially intact. Methods of transferring pillars to a substrate using the pillar delivery films are disclosed. In order to make an insulated glass unit, the delivery films are laminated to a receptor such as a glass pane, and the support film and sacrificial material are removed to leave the pillars remaining on the glass.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 4, 2018
    Inventors: Michael Benton Free, Martin B. Wolk, Terry O. Collier, Margaret M. Vogel-Martin
  • Patent number: 9855730
    Abstract: Methods of making articles using structured tapes are disclosed. The structured tapes may include a structured template layer having a structured surface and an opposed second surface and an uncured backfill layer, the uncured backfill layer has a lower refractive index than the structured template layer, and the uncured backfill layer has a structured surface conforming to the structured surface of the structured template layer and an opposed second surface. The structured tapes may include a structured template layer having a structured surface and an opposed second surface and an uncured backfill layer, the uncured backfill layer has a higher refractive index than the structured template layer, and the uncured backfill layer has a structured surface conforming to the structured surface of the structured template layer and an opposed second surface. The structure tapes may be laminated via the uncured backfill layer to a receptor substrate to form an article.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 2, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Michael Benton Free, Margaret M. Vogel-Martin, Evan L. Schwartz, Mieczyslaw H. Mazurek, Terry O. Collier
  • Publication number: 20170368569
    Abstract: A microstructured article includes a nanovoided layer having opposing first and second major surfaces, the first major surface being microstructured to form prisms, lenses, or other features. The nanovoided layer includes a polymeric binder and a plurality of interconnected voids, and optionally a plurality of nanoparticles. A second layer, which may include a viscoelastic layer or a polymeric resin layer, is disposed on the first or second major surface. A related method includes disposing a coating solution onto a substrate. The coating solution includes a polymerizable material, a solvent, and optional nanoparticles. The method includes polymerizing the polymerizable material while the coating solution is in contact with a microreplication tool to form a microstructured layer. The method also includes removing solvent from the microstructured layer to form a nanovoided microstructured article.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 28, 2017
    Inventors: Martin B. Wolk, William Blake Kolb, Michael Benton Free, Audrey A. Sherman, John A. Wheatley, David S. Thompson, Matthew S. Stay, Encai Hao