Patents by Inventor Martin R. Willard
Martin R. Willard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7670364Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: GrantFiled: December 16, 2003Date of Patent: March 2, 2010Assignee: Boston Scientific Scimed, Inc.Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard, Fernando Di Caprio, Stanley A. Nordin
-
Publication number: 20090234407Abstract: An apparatus and method can receive wireless energy using a wireless electrostimulation electrode assembly. In certain examples, at least some of the received wireless energy can be delivered as an electrostimulation to a heart. In certain examples, the wireless electrostimulation electrode can be mechanically supported at least partially using a ring formed by an annulus of a mitral valve of the heart. In certain examples, the wireless electrostimulation electrode assembly can be configured to be intravascularly delivered to an implant location within a chamber of the heart at the annulus of the mitral valve of the heart, and can fit entirely within the heart.Type: ApplicationFiled: February 4, 2009Publication date: September 17, 2009Inventors: Roger Hastings, Daniel M. Lafontaine, John A. Becker, Michael J. Pikus, Kevin D. Edmunds, Martin R. Willard
-
Publication number: 20090216267Abstract: Closure devices with a rapidly dissolving anchor, systems delivering closure devices, and methods for making and using the same. An example closure device for closing an opening in a body lumen may include a plug, a rapidly dissolving anchor, and a suture coupling the plug to the anchor. The rapidly dissolving anchor may be configured to dissolve within the body lumen within about 30 days or less. At least a portion of the plug may be disposed adjacent an exterior surface of the body lumen. At least a portion of the rapidly dissolving anchor may be disposed within the body lumen.Type: ApplicationFiled: February 24, 2009Publication date: August 27, 2009Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Martin R. Willard, Dave Sogard
-
Patent number: 7537580Abstract: A medical device comprises a catheter having at least one catheter shaft, which defines an inflation lumen for transport of an inflation fluid therethrough. The inflation fluid comprises a coolant. An expandable balloon, which has a proximal cone, distal cone, and a body region therebetween, is engaged to a distal region of the at least one catheter shaft. The balloon interior is in fluid communication with the inflation lumen. A portion of the catheter distal of the balloon body defines at least one port that is in fluid communication with the inflation lumen and the balloon interior.Type: GrantFiled: June 23, 2004Date of Patent: May 26, 2009Assignee: Boston Scientific Scimed, Inc.Inventor: Martin R. Willard
-
Publication number: 20090018599Abstract: An implantable cardiac tissue excitation system includes an implantable pacing controller unit with a pulse generation circuit. The system also includes a lead with a lead body extending between a proximal lead end attachable to the pacing controller unit and a distal lead end configured to be implanted within a heart. A lead conductor extends within the lead body. The system also includes a transmitter assembly located near the distal lead end that is electrically connected to the pulse generation circuit through the lead conductor to wirelessly transmit pacing control information and pacing energy. The system also includes a leadless electrode assembly configured to be implanted within the heart that includes a receiver to receive the wireless transmission, a charge storage unit to store the charge energy, and an electrical stimulation circuit to deliver an electrical stimulus to cardiac tissue using the pacing control information and the charge energy.Type: ApplicationFiled: September 13, 2007Publication date: January 15, 2009Applicant: Boston Scientific Scimed, Inc.Inventors: Roger N. Hastings, Daniel M. Lafontaine, Michael J. Pikus, Martin R. Willard
-
Publication number: 20080021505Abstract: Some embodiments of a cardiac stimulation system may include a plurality of electrode assemblies that are interconnected by one or more wires while at least one of the electrode assemblies (e.g., a control electrode) wirelessly receives energy through inductive coupling with a power communication unit external to the heart (e.g., a device implanted along one or more ribs). These embodiments may provide an arrangement for efficient inductive coupling from the power communication unit to the control electrode. Also, in some circumstances, the cardiac stimulation system may eliminate the need for wired leads that extend to a location outside the heart, thereby reducing the likelihood of infection that passes along the wire and into the heart.Type: ApplicationFiled: July 21, 2006Publication date: January 24, 2008Inventors: Roger Hastings, Martin R. Willard, Kevin D. Edmunds
-
Patent number: 6802849Abstract: A stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which there is included on the catheter shaft at least one body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon and further including axially slidable sleeves over the stent in the unexpanded condition.Type: GrantFiled: May 21, 2002Date of Patent: October 12, 2004Assignee: SciMed Life Systems, Inc.Inventors: David J Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard
-
Publication number: 20040175525Abstract: A catheter shaft and methods of making and using the same. The catheter shaft may include a proximal portion having about 80 to about 95 weight % polyoxymethylene and about 5 to about 20 weight % polyether polyester, an intermediate portion having about 20 to about 50 weight % polyoxymethylene and about 50 to about 80 weight % polyether polyester, and a distal portion having about 5 to about 20 weight % polyoxymethylene and about 80 to about 95 weight % polyether polyester. The intermediate portion is disposed between the proximal portion and the distal portion.Type: ApplicationFiled: December 29, 2003Publication date: September 9, 2004Applicant: SciMed Life Systems, Inc.Inventors: Martin R. Willard, Pu Zhou
-
Publication number: 20040133263Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: ApplicationFiled: December 16, 2003Publication date: July 8, 2004Applicant: SCIMED LIFE SYSTEMS, INC.Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard, Fernando Di Caprio, Stanley A. Nordin
-
Patent number: 6663660Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: GrantFiled: February 27, 2001Date of Patent: December 16, 2003Assignee: SciMed Life Systems, Inc.Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard, Fernando Di Caprio, Stanley A. Nordin
-
Publication number: 20030216642Abstract: An intravascular catheter having an elongate shaft that is entirely non-magnetically responsive and at least partially radiopaque, including a reinforcement layer. The reinforcement layer may comprise a non-magnetically responsive radiopaque metal, such as a multi-strand Tungsten braid. The improved shaft of the present invention is compatible with x-ray and MRI visualization techniques, and may be incorporated into a wide variety of intravascular catheters such as guide catheters, diagnostic catheters, balloon catheters, etc.Type: ApplicationFiled: May 16, 2002Publication date: November 20, 2003Inventors: Henry J. Pepin, Martin R. Willard, Pu Zhou, Greg Kampa
-
Publication number: 20020138081Abstract: A stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which there is included on the catheter shaft at least one body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon and further including axially slidable sleeves over the stent in the unexpanded condition.Type: ApplicationFiled: May 21, 2002Publication date: September 26, 2002Inventors: David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard
-
Patent number: 6391032Abstract: A stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which there is included on the catheter shaft at least one body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon and further including axially slidable sleeves over the stent in the unexpanded condition.Type: GrantFiled: August 31, 1999Date of Patent: May 21, 2002Assignee: Scimed Life Systems, Inc.Inventors: David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard
-
Publication number: 20010029378Abstract: A stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which there is included on the catheter shaft at least one body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon and further including axially slidable sleeves over the stent in the unexpanded condition.Type: ApplicationFiled: August 31, 1999Publication date: October 11, 2001Inventors: DAVID J. BLAESER, LINDA R. LORENTZEN CORNELIUS, MARTIN R. WILLARD
-
Publication number: 20010007082Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: ApplicationFiled: February 27, 2001Publication date: July 5, 2001Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen, Martin R. Willard, Fernando Di Caprio, Stanley A. Nordin
-
Patent number: 6203558Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation member coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation member; and a securement component coaxially mounted on the catheter, axially within the expandable inflation members, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: GrantFiled: October 14, 1999Date of Patent: March 20, 2001Assignee: SciMed Life Systems, Inc.Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard, Fernando Di Caprio, Stanley A. Nordin
-
Patent number: 6036682Abstract: A tubular member for manufacture of medical devices insertable into body lumens. The tubular member includes an inner tubular member, and outer tubular member, and a lumen through the inner tubular member. The outer tubular member has a plurality of radiopaque segments formed of radiopaque material incorporated into the tube polymeric material. One tubular member has highly radiopaque segments separated by less radiopaque segments at intervals greater than the radiopaque segment length, such that the radiopaque segments serve as marker bands. Another tubular member has long radiopaque segments separated by less radiopaque segments at intervals less than the radiopaque segment length, such that the less radiopaque segments serve as marker bands. Marker bands can be located at either regular intervals to aid in measuring internal dimensions or at significant structural locations to aid in catheter positioning.Type: GrantFiled: December 2, 1997Date of Patent: March 14, 2000Assignee: SciMed Life Systems, Inc.Inventors: Michael R. Lange, Martin R. Willard
-
Patent number: 5980530Abstract: A stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which there is included on the catheter shaft at least one body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon.Type: GrantFiled: August 23, 1996Date of Patent: November 9, 1999Inventors: Martin R. Willard, John H. Randby
-
Patent number: 5968069Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: GrantFiled: August 22, 1997Date of Patent: October 19, 1999Assignee: SciMed Life Systems, Inc.Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard, Fernando Di Caprio, Stanley A. Nordin
-
Patent number: 5944726Abstract: A stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which there is included on the catheter shaft at least one body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon and further including axially slidable sleeves over the stent in the unexpanded condition.Type: GrantFiled: August 22, 1997Date of Patent: August 31, 1999Assignee: SciMed Life Systems, Inc.Inventors: David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard