Patents by Inventor Marwan Al-Haik

Marwan Al-Haik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11840057
    Abstract: A reinforced carbon composite can include a carbon substrate and a metal organic framework bonded to the carbon substrate. For example, a reinforced carbon composite can include a first layer, a second layer, and a resin adhered to the first layer and the second layer. The first layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate. The second layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: December 12, 2023
    Assignee: Embry-Riddle Aeronautical University, Inc.
    Inventor: Marwan Al-Haik
  • Publication number: 20220388277
    Abstract: A reinforced carbon composite can include a carbon substrate and a metal organic framework bonded to the carbon substrate. For example, a reinforced carbon composite can include a first layer, a second layer, and a resin adhered to the first layer and the second layer. The first layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate. The second layer can include a carbon substrate and a metal organic framework bonded to the carbon substrate.
    Type: Application
    Filed: March 2, 2022
    Publication date: December 8, 2022
    Inventor: Marwan Al-Haik
  • Patent number: 8303926
    Abstract: In accordance with various embodiments, there are nanostructured materials including WS2 nanostructures and composites of WS2 nanostructures and other materials and methods for synthesizing nanostructured materials. The method can include providing a plurality of precursor materials, wherein each of the plurality of precursor materials can include a tungsten reactant. The method can also include flowing, for a reaction time, a substantially continuous stream of carbon disulfide (CS2) vapor in a carrier gas over the plurality of precursor materials at a temperature in the range of about 700° C. to about 1000 C, wherein the reaction time is sufficient to permit the tungsten reactant to react with carbon disulfide to form a plurality of tungsten disulfide (WS2) nanostructures.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 6, 2012
    Assignee: STC.UNM
    Inventors: Claudia C. Luhrs, Marwan Al-Haik, Hugo Zea
  • Patent number: 8298615
    Abstract: Exemplary embodiments provide methodologies for generating structures of filamentous carbon (or carbon filaments) with controlled geometries. In one exemplary embodiment of forming the carbon filament structure, a metal template can be exposed to a fuel rich gaseous mixture to form a carbon filament structure at an appropriate gas flow and/or at an appropriate temperature on the metal template. The metal template can have one or more metal surfaces with controlled geometries. Carbon filament structures can then be grown on the metal surfaces having corresponding geometries (or shapes) in the growth direction. The carbon filament structure can be two or three dimensional and can have high density. In various embodiments, the metal template can be removed to leave a self-supporting carbon filament structure.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: October 30, 2012
    Assignee: STC.UNM
    Inventors: Claudia Catalina Luhrs, Marwan Al-Haik, Zayd Leseman, Jonathan Phillips
  • Publication number: 20090263568
    Abstract: Exemplary embodiments provide methodologies for generating structures of filamentous carbon (or carbon filaments) with controlled geometries. In one exemplary embodiment of forming the carbon filament structure, a metal template can be exposed to a fuel rich gaseous mixture to form a carbon filament structure at an appropriate gas flow and/or at an appropriate temperature on the metal template. The metal template can have one or more metal surfaces with controlled geometries. Carbon filament structures can then be grown on the metal surfaces having corresponding geometries (or shapes) in the growth direction. The carbon filament structure can be two or three dimensional and can have high density. In various embodiments, the metal template can be removed to leave a self-supporting carbon filament structure.
    Type: Application
    Filed: January 16, 2009
    Publication date: October 22, 2009
    Inventors: Claudia Catalina LUHRS, Marwan AL-HAIK, Zayd LESEMAN, Jonathan PHILLIPS
  • Publication number: 20080093577
    Abstract: According to various embodiments of the present teachings, there is a metal-carbon nanotubes composite and methods of making it. A method of forming a metal-carbon nanotube composite can include providing a plurality of carbon nanotubes and providing a molten metal. The method can also include mixing the plurality of carbon nanotubes with the molten metal to form a mixture of the carbon nanotubes and the molten metal and solidifying the mixture of the carbon nanotubes and the molten metal to form a metal-carbon nanotube composite.
    Type: Application
    Filed: June 20, 2007
    Publication date: April 24, 2008
    Inventors: Tariq Khraishi, Marwan Al-Haik
  • Publication number: 20070110977
    Abstract: Embodiments provide a composite material with oriented nanotubes and a method for making the composite material. The composite material can be formed by distributing a plurality of nanotubes in a polymer matrix. The nanotubes can be further magnetically oriented during the formation of the polymeric matrix, while the polymer matrix is magnetically annealed. The composite material can provide enhanced mechanical and electrical properties, and effective radiation resistance against high-energy ionizing radiation particles and/or electromagnetic interferences. The composite material can be useful for lightweight armors incorporated into vehicles, aircrafts or personnel protection with high ballistic properties, and efficient dissipation of radiation energies, photovoltaic cells with improved polymer solar cell efficiency, improved light emitting diodes (LEDs) with controllable optical properties, or infrared screening devices with increased extinction coefficient.
    Type: Application
    Filed: August 28, 2006
    Publication date: May 17, 2007
    Inventors: Marwan Al-Haik, Mohamed El-Genk