Patents by Inventor Mary G. Garry

Mary G. Garry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11859213
    Abstract: Provided herein are method to increase the efficiency of interspecies chimera generation.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: January 2, 2024
    Assignee: Regents of the University of Minnesota
    Inventors: Daniel J. Garry, Mary G. Garry, Geunho Maeng, Ohad Gafni
  • Publication number: 20230365638
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human ETV2 gene comprising: a) generating an ETV2 null non-human animal cell, wherein both copies of the non-human ETV2 gene carry a mutation that prevents production of functional ETV2 protein in said non-human animal; b) creating an ETV2 null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said ETV2 null non-human animal cell of a) into an enucleated non-human oocyte and activating said oocyte to divide so as to form an ETV2 null non-human blastocyst; c) introducing human stem cells into the ETV2 null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudopregnant surrogate non-human animal to generate a chimeric non-human animal expressing human ETV2.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 16, 2023
    Inventors: Daniel J. Garry, Mary G. Garry, Tara Rasmussen, Naoko Koyano
  • Patent number: 11725217
    Abstract: A method is provided to enhance repair or regeneration of a mammalian cardiovascular system to include heart and/or vasculature comprising: administering to a mammal in need thereof a composition comprising an effective amount of an agent that elevates levels of Smo, Ptc1, Shh, Ihh, Dhh, Gli1, Gli2, or Mycn.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: August 15, 2023
    Assignee: Regents of the University of Minnesota
    Inventors: Daniel J. Garry, Mary G. Garry, Bhairab Singh
  • Patent number: 11673928
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human ETV2 gene comprising: a) generating an ETV2 null non-human animal cell, wherein both copies of the non-human ETV2 gene carry a mutation that prevents production of functional ETV2 protein in said non-human animal; b) creating an ETV2 null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said ETV2 null non-human animal cell of a) into an enucleated non-human oocyte and activating said oocyte to divide so as to form an ETV2 null non-human blastocyst; c) introducing human stem cells into the ETV2 null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudopregnant surrogate non-human animal to generate a chimeric non-human animal expressing human ETV2.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 13, 2023
    Assignee: Regents of the University of Minnesota
    Inventors: Daniel J. Garry, Mary G. Garry, Tara Rasmussen, Naoko Koyano
  • Publication number: 20210169054
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human NKX2-5, HANDII, TBX5 gene or a combination thereof gene comprising: a) generating a NKX2-5, HANDII, TBX5 or combination thereof null non-human animal cell, wherein both copies of the non-human NKX2-5, HANDII, TBX5 gene or combination thereof carry a mutation that prevents production of functional NKX2-5, HANDII, TBX5 protein or combination thereof in said non-human animal; b) creating a NKX2-5, HANDII, TBX5 or combination thereof null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said NKX2-5, HANDII, TBX5 or combination thereof null non-human animal cell of a) into an enucleated non-human oocyte and activating said oocyte to divide so as to form an NKX2-5, HANDII, TBX5 or combination thereof null non-human blastocyst; c) introducing human stem cells into the NKX2-5, HANDII, TBX5 or combination null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudo
    Type: Application
    Filed: December 11, 2020
    Publication date: June 10, 2021
    Inventors: Daniel J. Garry, Mary G. Garry, Naoko Koyano
  • Publication number: 20210161110
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human a MYF5, MYOD, MRF4 gene or a combination thereof gene comprising: a) generating an MYF5, MYOD, MRF4 or combination thereof null non-human animal cell, wherein both copies of the non-human MYF5, MYOD, MRF4 gene or combination thereof carry a mutation that prevents production of functional MYF5, MYOD, MRF4 protein or combination thereof in said non-human animal; b) creating a MYF5, MYOD, MRF4 or combination thereof null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said MYF5, MYOD, MRF4 or combination thereof null non-human animal cell of a) into an enucleated non-human cocyte and activating said oocyte to divide so as to form an MYF5, MYOD, MRF4 or combination thereof null non-human blastocyst; c) introducing human stem cells into the MYF5, MYOD, MRF4 or combination null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudopregnant surrogate non-human
    Type: Application
    Filed: November 19, 2020
    Publication date: June 3, 2021
    Inventors: Daniel J. Garry, Mary G. Garry, Naoko Koyano
  • Patent number: 10897880
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human NKX2-5, HANDII, TBX5 gene or a combination thereof gene comprising: a) generating a NKX2-5, HANDII, TBX5 or combination thereof null non-human animal cell, wherein both copies of the non-human NKX2-5, HANDII, TBX5 gene or combination thereof carry a mutation that prevents production of functional NKX2-5, HANDII, TBX5 protein or combination thereof in said non-human animal; b) creating a NKX2-5, HANDII, TBX5 or combination thereof null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said NKX2-5, HANDII, TBX5 or combination thereof null non-human animal cell of a) into an enucleated non-human oocyte and activating said oocyte to divide so as to form an NKX2-5, HANDII, TBX5 or combination thereof null non-human blastocyst; c) introducing human stem cells into the NKX2-5, HANDII, TBX5 or combination null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudo
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 26, 2021
    Assignee: Regents of the University of Minnesota
    Inventors: Daniel J. Garry, Mary G. Garry, Naoko Koyano
  • Publication number: 20210002616
    Abstract: Provided herein are method to increase the efficiency of interspecies chimera generation.
    Type: Application
    Filed: May 18, 2020
    Publication date: January 7, 2021
    Inventors: Daniel J. Garry, Mary G. Garry, Geunho Maeng, Ohad Gafni
  • Patent number: 10874092
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human a MYF5, MYOD, MRF4 gene or a combination thereof gene comprising: a) generating an MYF5, MYOD, MRF4 or combination thereof null non-human animal cell, wherein both copies of the non-human MYF5, MYOD, MRF4 gene or combination thereof carry a mutation that prevents production of functional MYF5, MYOD, MRF4 protein or combination thereof in said non-human animal; b) creating a MYF5, MYOD, MRF4 or combination thereof null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said MYF5, MYOD, MRF4 or combination thereof null non-human animal cell of a) into an enucleated non-human oocyte and activating said oocyte to divide so as to form an MYF5, MYOD, MRF4 or combination thereof null non-human blastocyst; c) introducing human stem cells into the MYF5, MYOD, MRF4 or combination null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudopregnant surrogate non-human
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 29, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Daniel J. Garry, Mary G. Garry, Naoko Koyano
  • Patent number: 10858627
    Abstract: Disclosed is a method to differentiate stern, progenitor or precursor cells comprising contacting said stem, progenitor or precursor cells with miR-130a, or an RNA having at least 95% identity thereto, so as to yield cells of endothelial lineage. Further disclosed are compositions comprising the endothelial lineage cells obtained and methods of using the compositions for treating diseases including cardiovascular diseases.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 8, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Daniel J. Garry, Naoko Koyano-Nakagawa, Mary G. Garry, Bhairab Singh
  • Publication number: 20200224218
    Abstract: A method is provided to enhance repair or regeneration of a mammalian cardiovascular system to include heart and/or vasculature comprising: administering to a mammal in need thereof a composition comprising an effective amount of an agent that elevates levels of Smo, Ptc1, Shh, Ihh, Dhh, Gli1, Gli2, or Mycn,
    Type: Application
    Filed: July 23, 2019
    Publication date: July 16, 2020
    Inventors: Daniel J. Garry, Mary G. Garry, Bhairab Singh
  • Publication number: 20190010458
    Abstract: Disclosed is a method to differentiate stern, progenitor or precursor cells comprising contacting said stem, progenitor or precursor cells with miR-130a, or an RNA having at least 95% identity thereto, so as to yield cells of endothelial lineage. Further disclosed are compositions comprising the endothelial lineage cells obtained and methods of using the compositions for treating diseases including cardiovascular diseases.
    Type: Application
    Filed: July 29, 2016
    Publication date: January 10, 2019
    Inventors: Daniel J. Garry, Naoko Koyano-Nakagawa, Mary G. Garry, Bhairab Singh
  • Publication number: 20180177165
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human NKX2-5, HANDII, TBX5 gene or a combination thereof gene comprising: a) generating a NKX2-5, HANDII, TBX5 or combination thereof null non-human animal cell, wherein both copies of the non-human NKX2-5, HANDII, TBX5 gene or combination thereof carry a mutation that prevents production of functional NKX2-5, HANDII, TBX5 protein or combination thereof in said non-human animal; b) creating a NKX2-5, HANDII, TBX5 or combination thereof null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said NKX2-5, HANDII, TBX5 or combination thereof null non-human animal cell of a) into an enucleated non-human oocyte and activating said oocyte to divide so as to form an NKX2-5, HANDII, TBX5 or combination thereof null non-human blastocyst; c) introducing human stem cells into the NKX2-5, HANDII, TBX5 or combination null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudo
    Type: Application
    Filed: June 30, 2016
    Publication date: June 28, 2018
    Inventors: Daniel J. Garry, Mary G. Garry, Naoko Koyano-Nakagawa
  • Publication number: 20180177166
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human a MYF5, MYOD, MRF4 gene or a combination thereof gene comprising: a) generating an MYF5, MYOD, MRF4 or combination thereof null non-human animal cell, wherein both copies of the non-human MYF5, MYOD, MRF4 gene or combination thereof carry a mutation that prevents production of functional MYF5, MYOD, MRF4 protein or combination thereof in said non-human animal; b) creating a MYF5, MYOD, MRF4 or combination thereof null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said MYF5, MYOD, MRF4 or combination thereof null non-human animal cell of a) into an enucleated non-human oocyte and activating said oocyte to divide so as to form an MYF5, MYOD, MRF4 or combination thereof null non-human blastocyst; c) introducing human stem cells into the MYF5, MYOD, MRF4 or combination null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudopregnant surrogate non-human
    Type: Application
    Filed: June 30, 2016
    Publication date: June 28, 2018
    Inventors: Daniel J. Garry, Mary G. Garry, Naoko Koyano-Nakagawa
  • Publication number: 20180037620
    Abstract: Described herein is a method for producing a chimeric non-human animal expressing a human ETV2 gene comprising: a) generating an ETV2 null non-human animal cell, wherein both copies of the non-human ETV2 gene carry a mutation that prevents production of functional ETV2 protein in said non-human animal; b) creating an ETV2 null non-human blastocyst by somatic cell nuclear transfer comprising fusing a nucleus from said ETV2 null non-human animal cell of a) into an enucleated non-human oocyte and activating said oocyte to divide so as to form an ETV2 null non-human blastocyst; c) introducing human stem cells into the ETV2 null non-human blastocyst of b); and d) implanting said blastocyst from c) into a pseudopregnant surrogate non-human animal to generate a chimeric non-human animal expressing human ETV2.
    Type: Application
    Filed: March 3, 2016
    Publication date: February 8, 2018
    Inventors: Daniel J. Garry, Mary G. Garry, Tara Rasmussen, Naoko Koyano-Nakagawa