Patents by Inventor Maryam Shariati

Maryam Shariati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190233887
    Abstract: Various embodiments of a low-volume sequencing system are provided herein. The system can include a low-volume flowcell having at least one reaction chamber of a defined volume (e.g., less than about 100 ?l). The system can also include an automated reagent delivery mechanism configured to reversibly couple with the inlet port corresponding to a target reaction chamber thereby placing allowing for reagent to be accurately moved from a storage container to the reaction chamber with minimal reagent waste. The flowcells can include a plurality of reaction chambers (e.g., 6) thereby allowing for parallel analysis of multiple samples. Various methods of analyzing a biomolecule are also provided herein.
    Type: Application
    Filed: December 19, 2018
    Publication date: August 1, 2019
    Inventors: Jon A. HOSHIZAKI, Joon Mo YANG, Maryam SHARIATI, David M. COX, Kirk M. HIRANO, John BRIDGHAM, George Stefan GOLDA, Sam Lee WOO
  • Publication number: 20180016624
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 18, 2018
    Inventors: Min YUE, David M. LIU, Joy ROY, Yuh-Min CHIANG, Joon Mo YANG, Dennis LEHTO, Charles S. VANN, Nigel P. BEARD, Ian A. HARDING, John R. Van Camp, Alexander DROMARETSKY, Sergey V. ERMAKOV, Mark F. OLDHAM, Maryam SHARIATI, Umberto ULMANELLA
  • Patent number: 9714444
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: July 25, 2017
    Assignee: APPLIED BIOSYSTEMS, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella
  • Publication number: 20150191784
    Abstract: Various embodiments of a sequencing system capable of rapidly imaging samples at multiple wavelengths are provided herein. In one embodiment, the system includes a fast-indexing filter wheel having a plurality of excitation and emission filters capable of being rapidly rotated into and out of communication with an excitation source (e.g., an arc lamp, a laser. For example, the filter wheel can be configured to index in an amount of time falling within a range of about 40 ms to about 60 ms, preferably 50 ms. The system can also be configured to account for vibrations resulting from the quick starts and stops of the fast-indexing filter wheel as well as vibrations resulting from other sources. Various methods of rapidly imaging a sample at multiple wavelengths are also provided herein.
    Type: Application
    Filed: January 9, 2015
    Publication date: July 9, 2015
    Inventors: David COX, Marc HABERSTROH, Patrick KINNEY, Albert CARRILLO, Jon HOSHIZAKI, Maryam SHARIATI, Howard KING, Joe Y. LEE, Matthew CHAN
  • Publication number: 20150087530
    Abstract: Various embodiments of a low-volume sequencing system are provided herein. The system can include a low-volume flowcell having at least one reaction chamber of a defined volume (e.g., less than about 100 ?l). The system can also include an automated reagent delivery mechanism configured to reversibly couple with the inlet port corresponding to a target reaction chamber thereby placing allowing for reagent to be accurately moved from a storage container to the reaction chamber with minimal reagent waste. The flowcells can include a plurality of reaction chambers (e.g., 6) thereby allowing for parallel analysis of multiple samples. Various methods of analyzing a biomolecule are also provided herein.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 26, 2015
    Inventors: Jon A. HOSHIZAKI, Joon Mo YANG, Maryam SHARIATI, David M. COX, Kirk M. HIRANO, John BRIDGHAM, George Stefan GOLDA, Sam Lee WOO
  • Patent number: 8934098
    Abstract: Various embodiments of a sequencing system capable of rapidly imaging samples at multiple wavelengths are provided herein. In one embodiment, the system includes a fast-indexing filter wheel having a plurality of excitation and emission filters capable of being rapidly rotated into and out of communication with an excitation source (e.g., an arc lamp, a laser. For example, the filter wheel can be configured to index in an amount of time falling within a range of about 40 ms to about 60 ms, preferably 50 ms. The system can also be configured to account for vibrations resulting from the quick starts and stops of the fast-indexing filter wheel as well as vibrations resulting from other sources. Various methods of rapidly imaging a sample at multiple wavelengths are also provided herein.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: January 13, 2015
    Assignee: Life Technologies Corporation
    Inventors: David Cox, Marc Haberstroh, Patrick Kinney, Albert Carrillo, Jon Hoshizaki, Maryam Shariati, Howard King, Joe Lee, Matthew Chan
  • Publication number: 20140162264
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 12, 2014
    Applicant: APPLIED BIOSYSTEMS, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella
  • Patent number: 8597590
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 3, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella
  • Publication number: 20110128545
    Abstract: Various embodiments of a sequencing system capable of rapidly imaging samples at multiple wavelengths are provided herein. In one embodiment, the system includes a fast-indexing filter wheel having a plurality of excitation and emission filters capable of being rapidly rotated into and out of communication with an excitation source (e.g., an arc lamp, a laser. For example, the filter wheel can be configured to index in an amount of time falling within a range of about 40 ms to about 60 ms, preferably 50 ms. The system can also be configured to account for vibrations resulting from the quick starts and stops of the fast-indexing filter wheel as well as vibrations resulting from other sources. Various methods of rapidly imaging a sample at multiple wavelengths are also provided herein.
    Type: Application
    Filed: August 31, 2010
    Publication date: June 2, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: David Cox, Marc Haberstroh, Patrick Kinney, Albert Carrillo, Jon Hoshizaki, Maryam Shariati, Howard King, Joe Lee, Matthew Chan
  • Publication number: 20110124111
    Abstract: Various embodiments of a low-volume sequencing system are provided herein. The system can include a low-volume flowcell having at least one reaction chamber of a defined volume (e.g., less than about 100 ?l). The system can also include an automated reagent delivery mechanism configured to reversibly couple with the inlet port corresponding to a target reaction chamber thereby placing allowing for reagent to be accurately moved from a storage container to the reaction chamber with minimal reagent waste. The flowcells can include a plurality of reaction chambers (e.g., 6) thereby allowing for parallel analysis of multiple samples. Various methods of analyzing a biomolecule are also provided herein.
    Type: Application
    Filed: August 31, 2010
    Publication date: May 26, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jon HOSHIZAKI, Joon Mo YANG, Maryam SHARIATI, David COX, Kirk HIRANO, John BRIDGHAM, Sam WOO, George GOLDA
  • Publication number: 20110052446
    Abstract: Various flowcell configurations and systems are provided as are methods of making and using same. The flowcells, systems, and methods of use can be useful in carrying out sequencing reactions and next generation sequencing methods.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 3, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Kirk HIRANO, Mark ANDERSEN, Jian GONG, Sam WOO, David COX, Joon Mo YANG, Min YUE, Maryam SHARIATI, John BRIDGHAM, David LIU
  • Publication number: 20110020179
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: May 27, 2010
    Publication date: January 27, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Min Yue, David M. Liu, Yuh-Min Chiang, Joon-Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Joy Roy, Maryam Shariati, Umberto Ulmanella
  • Publication number: 20100261230
    Abstract: A system and method are provided for large volume sample amplification adaptable for use with conventional PCR-based reactions as well as emulsion-based PCR reactions. A sample is retained in a pouch or flexible bag which permits bulk PCR amplification with efficient heat-transfer properties. For applications involving emulsion-based PCR amplification, the system and method provide improved uniformity in emulsion amplification and can be used to amplify large or small volume emulsions rapidly and reproducibly.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 14, 2010
    Applicant: APPLIED BIOSYSTEMS, LLC
    Inventors: David LIU, Joon Mo YANG, Maryam SHARIATI, Sam WOO, David M. COX, Dennis A. LEHTO
  • Publication number: 20090081768
    Abstract: An assay card and devices and methods for isolating chambers on the assay card are described. The assay card comprises a substrate formed of one or more materials, e.g., plastic, having a softening temperature, the substrate defining channels communicating with respective reaction chambers. The assay card may be heated in a region of the channels to at least the softening temperature. The softened plastic may be deformed, e.g., with a tool which may or may not also provide the heat for softening the substrate. In this manner, the plastic of the substrate may be caused to at least partially obstruct the channels, thereby isolating the reaction chambers. The invention also relates to a method of manufacturing a tool device that includes pins for heating and deforming an assay card.
    Type: Application
    Filed: September 21, 2007
    Publication date: March 26, 2009
    Applicant: Applera Corporation
    Inventors: Joon Mo Yang, David M. Liu, Yuh-Min Chiang, Carol Schrembri, Aldrich N.K. Lau, Umberto Ulmanella, Nigel P. Beard, Maryam Shariati, James C. Nurse, Douwe D. Haga, Ian A. Harding, Julio P. Focaracci
  • Publication number: 20070014695
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: April 26, 2006
    Publication date: January 18, 2007
    Applicant: Applera Corporation
    Inventors: Min Yue, David Liu, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles Vann, Nigel Beard, Ian Harding, John Van Camp, Alexander Dromaretsky, Sergey Ermakov, Mark Oldham, Joy Roy, Maryam Shariati, Umberto Ulmanella