Patents by Inventor Masaaki Miura

Masaaki Miura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934003
    Abstract: A planar light source includes: a support member; a light guide member disposed on the support member and having a light source positioning part; and a light source disposed on the support member while being in the light source positioning part of the light guide member. The support member includes: an insulation base having a first face positioned closer to the light source and a second face positioned opposite the first face, a first conductive layer disposed on the first face of the insulation base and electrically connected to the light source, an adhesive layer disposed on and in contact with the first face of the insulation base and the first conductive layer, and a light reflecting sheet disposed on the adhesive layer.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: March 19, 2024
    Assignee: NICHIA CORPORATION
    Inventors: Yukihiro Miura, Masaaki Katsumata, Ryohei Yamashita, Takashi Matsuo
  • Publication number: 20230091592
    Abstract: The dissimilar material joint structure 1 includes a plate member 20, a weld nut 10 on a front surface of the plate member, and a washer 30 on a back surface of the plate member. The weld nut and the plate member are made of dissimilar materials different from each other. The weld nut includes a projection 12 on a bearing surface thereof. The plate member has a bolt through-hole 23 located on a center axis of the weld nut, for passing therethrough a bolt 40 corresponding to the weld nut and a projection through-hole 24 on the periphery of the bolt through-hole. The projection through-hole is penetrable by the projection. The weld nut is not directly welded to the plate member but joined to the plate member by being welded to the washer via the projection penetrating the projection through-hole.
    Type: Application
    Filed: November 26, 2022
    Publication date: March 23, 2023
    Inventors: Masaaki MIURA, Seiji MIURA, Kouji SAKOTA
  • Patent number: 10600754
    Abstract: There is provided a bonding method capable of accurately positioning a bonding stage. According to an aspect of the present invention, a bonding method using a bonding apparatus including a rotation drive mechanism for rotating a bonding stage 1 about a ?-axis includes the steps of: (e) locking the bonding stage with respect to the ?-axis, and bonding a wire or bump onto a certain area of a substrate held on the bonding stage; (f) unlocking the bonding stage with respect to the ?-axis, and rotating the bonding stage about the ?-axis with the rotation drive mechanism; and (g) locking the bonding stage with respect to the ?-axis, and bonding a wire or bump onto a remaining region of the substrate.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: March 24, 2020
    Assignee: KAIJO CORPORATION
    Inventors: Hideki Yoshino, Masaaki Miura
  • Publication number: 20190164928
    Abstract: There is provided a bonding method capable of accurately positioning a bonding stage. According to an aspect of the present invention, a bonding method using a bonding apparatus including a rotation drive mechanism for rotating a bonding stage 1 about a ?-axis includes the steps of: (e) locking the bonding stage with respect to the ?-axis, and bonding a wire or bump onto a certain area of a substrate held on the bonding stage; (f) unlocking the bonding stage with respect to the ?-axis, and rotating the bonding stage about the ?-axis with the rotation drive mechanism; and (g) locking the bonding stage with respect to the ?-axis, and bonding a wire or bump onto a remaining region of the substrate.
    Type: Application
    Filed: February 28, 2017
    Publication date: May 30, 2019
    Inventors: Hideki YOSHINO, Masaaki MIURA
  • Publication number: 20190078188
    Abstract: A high-strength hot-dip galvanized steel sheet with improved bending workability and reduced strength difference between a center part and end parts in the sheet width direction is provided. A method for manufacturing the high-strength hot-dip galvanized steel sheet is also provided. The hot-dip galvanized steel sheet has a hot-dip galvanizing layer on a surface of a base steel sheet containing: C, Mn, P, S, and Al; Ti and B in amounts satisfying expression (1): 0.005×[Mn]+0.02×[B]1/2+0.025?[Ti]?0.15; N; and Si as needed; the remainder being iron and unavoidable impurities. The base steel sheet has 50 area % or more of the martensite, 15-50 area % of the bainite, and 5 area % or less of the ferrite, with respect to the overall metallographic structure.
    Type: Application
    Filed: November 14, 2018
    Publication date: March 14, 2019
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Muneaki IKEDA, Masaaki MIURA
  • Patent number: 9738956
    Abstract: Disclosed is an ultra high strength steel plate with at least 1100 MPa of tensile strength that has both an excellent strength-stretch balance and excellent bending workability, and a method for producing the same. The metal structure of the steel plate has martensite, and the soft phases of bainitic ferrite and polygonal ferrite. The area of the aforementioned martensite constitutes 50% or more, the area of the aforementioned bainitic ferrite constitutes 15% or more, and the area of the aforementioned polygonal ferrite constitutes 5% or less (including 0%). When the circle-equivalent diameter of the aforementioned soft phases is measured, the coefficient of variation (standard deviation/mean value) is less or equal to 1.0. The ultra high strength steel plate has at least 1100 MPa of tensile strength.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: August 22, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Muneaki Ikeda, Yukihiro Utsumi, Masaaki Miura
  • Patent number: 9708697
    Abstract: In a steel sheet having a specific chemical composition and having a microstructure including ferrite that is a soft first phase by 20-50% in terms of the area ratio, the remainder being tempered martensite and/or tempered bainite that is a hard second phase, the microstructure of steel of a surface layer section of the steel sheet from the surface to the depth of 100 ?m and a center section of t/4-3t/4 (t is the sheet thickness) is controlled.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: July 18, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomokazu Masuda, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Patent number: 9598751
    Abstract: In a high strength cold-rolled steel plate having a specific chemical composition, a soft first phase (ferrite) has an area ratio of 20-50%, the remainder being a hard second phase (tempered martensite and/or tempered bainite), among all the ferrite grains, ferrite grains that have an average grain diameter of 10-25 ?m account for a total area ratio of 80% or more, the number of the cementite grains that have an equivalent circle diameter of 0.3 ?m or more is more than 0.15 piece and 1.0 piece or less per 1 ?m2 of ferrite, and the tensile strength is 980 MPa or more.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: March 21, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomokazu Masuda, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Patent number: 9534279
    Abstract: A high-strength cold-rolled steel sheet has a chemical composition including C of 0.05% to 0.30%, Si of greater than 0% to 3.0%, Mn of 0.1% to 5.0%, P of greater than 0% to 0.1%, S of greater than 0% to 0.02%, Al of 0.01% to 1.0%, and N of greater than 0% to 0.01%, in mass percent, with the remainder including iron and inevitable impurities. The steel sheet has a microstructure containing ferrite as a soft primary phase in an area percentage of 20% to 50% with the remainder including tempered martensite and/or tempered bainite as a hard secondary phase. The ferrite grains are adapted to contain cementite particles having an appropriate size in an appropriate number density.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: January 3, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomokazu Masuda, Hideo Hata, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Publication number: 20150144231
    Abstract: In a steel sheet having a specific chemical composition and having a microstructure including ferrite that is a soft first phase by 20-50% in terms of the area ratio, the remainder being tempered martensite and/or tempered bainite that is a hard second phase, the microstructure of steel of a surface layer section of the steel sheet from the surface to the depth of 100 ?m and a center section of t/4-3t/4 (t is the sheet thickness) is controlled.
    Type: Application
    Filed: May 29, 2013
    Publication date: May 28, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Publication number: 20150114524
    Abstract: In a high strength cold-rolled steel plate having a specific chemical composition, a soft first phase (ferrite) has an area ratio of 20-50%, the remainder being a hard second phase (tempered martensite and/or tempered bainite), among all the ferrite grains, ferrite grains that have an average grain diameter of 10-25 ?m account for a total area ratio of 80% or more, the number of the cementite grains that have an equivalent circle diameter of 0.3 ?m or more is more than 0.15 piece and 1.0 piece or less per 1 ?m2 of ferrite, and the tensile strength is 980 MPa or more.
    Type: Application
    Filed: May 24, 2013
    Publication date: April 30, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Publication number: 20150111064
    Abstract: Provided are: a high-strength hot-dip galvanized steel sheet in which bending workability of the high-strength hot-dip galvanized steel sheet is improved, and in which strength difference between a center part and end parts in the sheet width direction is reduced; and a method for manufacturing a high-strength hot-dip galvanized steel sheet. The steel sheet is a hot-dip galvanized steel sheet having a hot-dip galvanizing layer on a surface of a base steel sheet containing: C, Mn, P, S, and Al; Ti and B in amounts satisfying equation (1); and N; and Si as needed; the remainder comprising iron and unavoidable impurities; the metallographic structure of the base steel sheet having martensite, bainite, and ferrite, the ratios of each with respect to the overall metallographic structure being 50 area % or more of the martensite, 15-50 area % of the bainite, and 5 area % or less of the ferrite, 0.005×[Mn]+0.02×[B]1/2+0.025?[Ti]?0.15.
    Type: Application
    Filed: March 22, 2013
    Publication date: April 23, 2015
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO(KOBE STEEL, LTD.)
    Inventors: Muneaki Ikeda, Masaaki Miura
  • Patent number: 8986468
    Abstract: A cold rolled steel sheet satisfying on the basis of percent by mass the chemical composition of 0.06-0.6% C, 0.1-2% Si, 0.01-3% Al, 1-4% Si+Al, 1-6% Mn, Si/Mn?0.40, in which there exists 10 or more pieces/100 ?m2 of Mn—Si composite oxide having Mn—Si atom ratio (Mn/Si) of 0.5 or over and major axis of from 0.01 ?m to 5 ?m and also having a covering ratio of 10% or below at which the surface of the steel sheet is covered with oxide containing Si as the main component.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: March 24, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Masaaki Miura, Shinji Kozuma, Yoichi Mukai, Yoshinobu Omiya
  • Publication number: 20140305553
    Abstract: A high-strength cold-rolled steel sheet has a chemical composition including C of 0.05% to 0.30%, Si of greater than 0% to 3.0%, Mn of 0.1% to 5.0%, P of greater than 0% to 0.1%, S of greater than 0% to 0.02%, Al of 0.01% to 1.0%, and N of greater than 0% to 0.01%, in mass percent, with the remainder including iron and inevitable impurities. The steel sheet has a microstructure containing ferrite as a soft primary phase in an area percentage of 20% to 50% with the remainder including tempered martensite and/or tempered bainite as a hard secondary phase. The ferrite grains are adapted to contain cementite particles having an appropriate size in an appropriate number density.
    Type: Application
    Filed: December 11, 2012
    Publication date: October 16, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Hideo Hata, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Patent number: 8465600
    Abstract: According to the present invention, there is provided a high strength steel sheet, which has, for example, a tensile strength of 590 to 980 MPa or more, which has favorable workability, and which is useful for an automobile, etc. The high strength steel sheet of the present invention comprises 0.03 to 0.20% C (% by mass in chemical compositions; hereafter, the same holds true), 0.50 to 2.5% Si, 0.50 to 2.5% Mn, and further, preferably 0.02 to 0.2% Mo. Moreover, its metal structure includes ferrite and low temperature transformation phase. The mean grain size of the low temperature transformation phase is 3.0 ?m or less. Further, grains whose size is 3.0 ?m or less occupy 50% or more by area ratio of the low temperature transformation phase, and an average aspect ratio of the low temperature transformation phase is 0.35 or more.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: June 18, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Seiko Watanabe, Masaaki Miura
  • Patent number: 8460800
    Abstract: Disclosed is a cold-rolled steel sheet having a specific steel composition and having a composite steel structure including a ferrite structure and a martensite-containing second phase. In a surface region of the steel sheet from the surface to a depth one-tenth the gage, the number density of n-ary groups of inclusions determined by specific n-th determinations is 120 or less per 100 cm2 of a rolling plane, in which the distance in steel sheet rolling direction between outermost surfaces of two outermost particles of the group of inclusions is 80 ?m or more. Also disclosed is a cold-rolled steel sheet having a specific steel composition and having a steel structure of a martensite single-phase structure. In the surface region, the number density of groups of inclusions, in which the distance between the outermost surfaces is 100 ?m or more, is 120 or less per 100 cm2 of a rolling plane.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: June 11, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Tetsuji Hoshika, Sae Mizuta, Yuichi Futamura, Masaaki Miura, Yukihiro Utsumi, Hiroaki Matsumoto, Hiroki Ohta
  • Patent number: 8388771
    Abstract: A high strength steel sheet contains, in percent by mass, 0.03 to 0.2% of C, 0.5 to 2.5% of Si, 1 to 3.0% of Mn, 0.01 to 0.5% of Cr, 0.01 to 0.5% of Mo, 0.02 to 0.15% of Al, 0.15% or less of Ti, 0.15% or less of No, and 0.15% or less of V; wherein the remainder includes Fe and inevitable impurities, and the content of Si satisfies the following formula (1), ??4.1?[Si]??2.4??(1), provided, ?=6.9×([C]+[Mn]/6+[Cr]/5+[Mo]/4+[Ti]/15+[Nb]/17+[V]/14)1/2 is given, wherein [ ] shows the quantity (mass percent) of each element contained in the steel sheet. The high strength steel sheet is improved in formability (particularly, elongation), and excellent in balance between strength and elongation.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 5, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yuichi Futamura, Katsuhiro Yamamoto, Masaaki Miura
  • Publication number: 20130008570
    Abstract: Disclosed is an ultra high strength steel plate with at least 1100 MPa of tensile strength that has both an excellent strength-stretch balance and excellent bending workability, and a method for producing the same. The metal structure of the steel plate has martensite, and the soft phases of bainitic ferrite and polygonal ferrite. The area of the aforementioned martensite constitutes 50% or more, the area of the aforementioned bainitic ferrite constitutes 15% or more, and the area of the aforementioned polygonal ferrite constitutes 5% or less (including 0%). When the circle-equivalent diameter of the aforementioned soft phases is measured, the coefficient of variation (standard deviation/mean value) is less or equal to 1.0. The ultra high strength steel plate has at least 1100 MPa of tensile strength.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 10, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd)
    Inventors: Muneaki Ikeda, Yukihiro Utsumi, Masaaki Miura
  • Patent number: 8349471
    Abstract: A high-strength cold-rolled steel sheet with improved TS-EL balance, springback value, workability and shape freezing properties having: a steel content including 0.10-0.20 mass % C, 0.5-2.5 mass % Si, 0.5-2.25 mass % Mn, and 0.01-0.10 mass % Al; a structure comprising (A) a mother phase structure of ferrite and (B) a second phase structure of retained austenite optionally including martensite; and satisfying the following expressions (1) and (2): (Vf×V?×C?×dis)/dia?300??(1), dis?1.0 ?m??(2); where Vf (%) is the volume fraction of the ferrite, V? (%) is the volume fraction of the retained austenite, C? (mass %) is the carbon content in the retained austenite, dis (?m) is the shortest distance between the second phase structures, and dia (?m) is the average grain size of the second phase structures.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: January 8, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Michitaka Tsunezawa, Yuichi Futamura, Masaaki Miura
  • Patent number: 8133330
    Abstract: A high-strength hot-dip galvanized steel sheet excellent in workability according to the present invention: contains C, Si, Mn and other elements; has a dual phase structure containing ferrite and martensite as the metallographic structure; and, in the ferrite structure, satisfies the expression 0.2?(Lb/La)?1.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 13, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Yuichi Futamura, Masaaki Miura