Patents by Inventor Masafumi UMENO

Masafumi UMENO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10364760
    Abstract: An engine control unit includes an extracting portion acquiring a sound or vibration of an engine from external and extracting vibration components of frequency bands each of which including a resonant frequency of a vibration mode, a waveform synthesis portion synthesizing the vibration components extracted by the extracting portion to generate a synthesis vibration waveform, a calculation portion calculating a time average value by averaging the synthesis vibration waveform in a predetermined time, a peak detection portion detecting a peak strength of the vibration component of the frequency band including a lowest resonant frequency, a storage portion previously storing a first threshold and a second threshold, and a determination portion determining an existence of a knocking and whether a knock level is a first knock level or a second knock level, by comparing the time average value with the first threshold and comparing the peak strength with the second threshold.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 30, 2019
    Assignee: DENSO CORPORATION
    Inventor: Masafumi Umeno
  • Patent number: 10147862
    Abstract: An electronic control device includes: a thermoelectric element module that has a plurality of thermoelectric element groups, which are connected in parallel; and a control circuit that supplies a driving power to the thermoelectric element module to perform an operation control of the thermoelectric element module. Additionally, the plurality of thermoelectric element groups respectively have a plurality of thermoelectric elements, which are connected in series. Moreover, each of the plurality of thermoelectric elements is provided with a pair of a p-type semiconductor and an n-type semiconductor. Furthermore, the plurality of thermoelectric element groups have different number of the thermoelectric elements.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 4, 2018
    Assignee: DENSO CORPORATION
    Inventors: Daichi Marui, Masafumi Umeno
  • Patent number: 10048240
    Abstract: A control apparatus that controls a gas concentration sensor includes a sweep circuit, a current detection resistor, and a calculation portion. The sweep circuit supplies the gas concentration sensor with a sweep current. The calculation portion calculates impedance of the gas concentration sensor. The gas concentration sensor and the current detection resistor are sequentially connected in series along a direction from the sweep circuit to a reference voltage. The sweep circuit has a constant voltage circuit and a reference resistor. An increasing and decreasing tendency of a manufacturing variation of the reference resistor and an increasing and decreasing tendency of a manufacturing variation of the current detection resistor are identical. The calculation portion divides a product of a resistance value of the current detection resistor and a time variation of applied voltage to the gas concentration sensor by a time variation of applied voltage to the current detection resistor.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 14, 2018
    Assignee: DENSO CORPORATION
    Inventors: Satoshi Nishimoto, Masafumi Umeno, Yuji Yamada
  • Patent number: 9955609
    Abstract: An electronic control device has a housing and an air breathing filter assembled to a through-hole of the housing. The air breathing filter has a filter supporting member and a filter cover member. A cylindrical portion of the filter supporting member is inserted into the through-hole from an inside space of the housing, while the filter cover member is fixed to the cylindrical portion of the filter supporting member from an outside of the housing. A pushing portion is formed in a leg portion of the filter cover member for pushing a wall of the housing in a downward direction. A water-proof sealing member is interposed between an inner wall surface of the housing and a flanged portion of the filter supporting member, so that a gap between the housing and the air breathing filter is surely sealed.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: April 24, 2018
    Assignee: DENSO CORPORATION
    Inventor: Masafumi Umeno
  • Publication number: 20180040796
    Abstract: An electronic control device includes: a thermoelectric element module that has a plurality of thermoelectric element groups, which are connected in parallel; and a control circuit that supplies a driving power to the thermoelectric element module to perform an operation control of the thermoelectric element module. Additionally, the plurality of thermoelectric element groups respectively have a plurality of thermoelectric elements, which are connected in series. Moreover, each of the plurality of thermoelectric elements is provided with a pair of a p-type semiconductor and an n-type semiconductor. Furthermore, the plurality of thermoelectric element groups have different number of the thermoelectric elements.
    Type: Application
    Filed: July 19, 2017
    Publication date: February 8, 2018
    Inventors: Daichi MARUI, Masafumi UMENO
  • Patent number: 9848511
    Abstract: A base plate for a circuit board assembly, to which an electronic component is soldered, has a through-hole. A screw hole is formed in a housing, to which the base plate is fixed by screw members. Multiple screw-fixing portions are formed in an electronic device, so that each of the screw members is inserted through each of the through-holes of the base plate and fixed to the housing in each of the screw-fixing portions. Two projections are formed at a first casing of the housing in each of the screw-fixing portions, so that the base plate is in contact with the first casing at two contacting points formed by the projections. The projections are symmetrically formed with respect to a center of the screw hole.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: December 19, 2017
    Assignee: DENSO CORPORATION
    Inventors: Masafumi Umeno, Satoshi Yamauchi
  • Patent number: 9765719
    Abstract: A control circuit includes a sweep circuit for supplying a sweep current to a gas concentration sensor, a current detection resistor for detecting a sensor current flowing in the gas concentration sensor, a calculation circuit for calculating an impedance of the gas concentration sensor based on the sensor current and an inter-terminal voltage of the gas concentration sensor, and a protective element for suppressing external noise from being applied to the sweep circuit and the calculation circuit. The sweep current is divided to flow in a first protective element and the gas concentration sensor. The sensor current is divided to flow in a second protective element and the current detection resistor. The calculation circuit calculates a loss current flowing to the first protective element or a second loss current flowing to the second protective element and calculates the sensor current based on the calculated current.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: September 19, 2017
    Assignee: DENSO CORPORATION
    Inventor: Masafumi Umeno
  • Patent number: 9714928
    Abstract: A gas-sensor control device includes a sweep circuit, a return sweep circuit, and a control portion. The sweep circuit energizes a detection current to flow through an oxygen sensor to calculates an impedance of the oxygen sensor. The return sweep circuit energizes a neutralization current to flow through the oxygen sensor in a direction opposite to a direction of the detection current, so as to remove electricity from the oxygen sensor that is energized by the detection current. The control portion executes a detection of an off failure of the sweep circuit and the return sweep circuit, only based on a sensor voltage acquired in a time period where the neutralization current flows through the oxygen sensor, and a threshold.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: July 25, 2017
    Assignee: DENSO CORPORATION
    Inventor: Masafumi Umeno
  • Patent number: 9709617
    Abstract: A load drive apparatus includes a switching element, a current detection circuit, a short circuit detection resistor, and a reflux diode. The switching element is placed to a high side of the inductive load, is interposed between the voltage source and the inductive load, and controls a current supplied to the inductive load. The current detection circuit is placed to a low side of the inductive load, and detects a current value of a current flowing through the low side of the inductive load. The short circuit detection resistor is interposed between the current detection circuit and a ground. The reflux diode is placed in a forward direction of the reflux diode and connects a middle point between the short circuit detection resistor and the current detection circuit with a different middle point between the switching element and the inductive load.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 18, 2017
    Assignee: DENSO CORPORATION
    Inventor: Masafumi Umeno
  • Publication number: 20170101944
    Abstract: An engine control unit includes an extracting portion acquiring a sound or vibration of an engine from external and extracting vibration components of frequency bands each of which including a resonant frequency of a vibration mode, a waveform synthesis portion synthesizing the vibration components extracted by the extracting portion to generate a synthesis vibration waveform, a calculation portion calculating a time average value by averaging the synthesis vibration waveform in a predetermined time, a peak detection portion detecting a peak strength of the vibration component of the frequency band including a lowest resonant frequency, a storage portion previously storing a first threshold and a second threshold, and a determination portion determining an existence of a knocking and whether a knock level is a first knock level or a second knock level, by comparing the time average value with the first threshold and comparing the peak strength with the second threshold.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 13, 2017
    Inventor: Masafumi UMENO
  • Patent number: 9491844
    Abstract: An electronic device includes a circuit board, first and second electronic components, a housing, and a heat conduction member. The first electronic component is mounted on a first surface of the circuit board, and the second electronic component is mounted on a second surface of the circuit board. The first electronic component and the second electronic component are arranged in an arrangement direction. The heat conduction member is disposed between the housing and a first component-opposite portion of the circuit board opposite to the first electronic component, and between the housing and a second component-opposite portion of the circuit board opposite to the second electronic component. The circuit board has a through hole in a formation area between the first electronic component and the second electronic component. The heat conduction member integrally covers each of the first component-opposite portion and the second component-opposite portion and the formation area of the circuit board.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: November 8, 2016
    Assignee: DENSO CORPORATION
    Inventor: Masafumi Umeno
  • Publication number: 20160236125
    Abstract: An electronic control device has a housing and an air breathing filter assembled to a through-hole of the housing. The air breathing filter has a filter supporting member and a filter cover member. A cylindrical portion of the filter supporting member is inserted into the through-hole from an inside space of the housing, while the filter cover member is fixed to the cylindrical portion of the filter supporting member from an outside of the housing. A pushing portion is formed in a leg portion of the filter cover member for pushing a wall of the housing in a downward direction. A water-proof sealing member is interposed between an inner wall surface of the housing and a flanged portion of the filter supporting member, so that a gap between the housing and the air breathing filter is surely sealed.
    Type: Application
    Filed: January 14, 2016
    Publication date: August 18, 2016
    Inventor: Masafumi UMENO
  • Publication number: 20160202305
    Abstract: A load drive apparatus includes a switching element, a current detection circuit, a short circuit detection resistor, and a reflux diode. The switching element is placed to a high side of the inductive load, is interposed between the voltage source and the inductive load, and controls a current supplied to the inductive load. The current detection circuit is placed to a low side of the inductive load, and detects a current value of a current flowing through the low side of the inductive load. The short circuit detection resistor is interposed between the current detection circuit and a ground. The reflux diode is placed in a forward direction of the reflux diode and connects a middle point between the short circuit detection resistor and the current detection circuit with a different middle point between the switching element and the inductive load.
    Type: Application
    Filed: December 18, 2015
    Publication date: July 14, 2016
    Inventor: Masafumi UMENO
  • Publication number: 20160084812
    Abstract: A control apparatus that controls a gas concentration sensor includes a sweep circuit, a current detection resistor, and a calculation portion. The sweep circuit supplies the gas concentration sensor with a sweep current. The calculation portion calculates impedance of the gas concentration sensor. The gas concentration sensor and the current detection resistor are sequentially connected in series along a direction from the sweep circuit to a reference voltage. The sweep circuit has a constant voltage circuit and a reference resistor. An increasing and decreasing tendency of a manufacturing variation of the reference resistor and an increasing and decreasing tendency of a manufacturing variation of the current detection resistor are identical. The calculation portion divides a product of a resistance value of the current detection resistor and a time variation of applied voltage to the gas concentration sensor by a time variation of applied voltage to the current detection resistor.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 24, 2016
    Inventors: Satoshi NISHIMOTO, Masafumi UMENO, Yuji YAMADA
  • Publication number: 20160088759
    Abstract: A base plate for a circuit board assembly, to which an electronic component is soldered, has a through-hole. A screw hole is formed in a housing, to which the base plate is fixed by screw members. Multiple screw-fixing portions are formed in an electronic device, so that each of the screw members is inserted through each of the through-holes of the base plate and fixed to the housing in each of the screw-fixing portions. Two projections are formed at a first casing of the housing in each of the screw-fixing portions, so that the base plate is in contact with the first casing at two contacting points formed by the projections. The projections are symmetrically formed with respect to a center of the screw hole.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 24, 2016
    Inventors: Masafumi UMENO, Satoshi YAMAUCHI
  • Publication number: 20150362456
    Abstract: A control circuit includes a sweep circuit for supplying a sweep current to a gas concentration sensor, a current detection resistor for detecting a sensor current flowing in the gas concentration sensor, a calculation circuit for calculating an impedance of the gas concentration sensor based on the sensor current and an inter-terminal voltage of the gas concentration sensor, and a protective element for suppressing external noise from being applied to the sweep circuit and the calculation circuit. The sweep current is divided to flow in a first protective element and the gas concentration sensor. The sensor current is divided to flow in a second protective element and the current detection resistor. The calculation circuit calculates a loss current flowing to the first protective element or a second loss current flowing to the second protective element and calculates the sensor current based on the calculated current.
    Type: Application
    Filed: April 8, 2015
    Publication date: December 17, 2015
    Inventor: Masafumi UMENO
  • Publication number: 20150327354
    Abstract: An electronic device includes a circuit board, first and second electronic components, a housing, and a heat conduction member. The first electronic component is mounted on a first surface of the circuit board, and the second electronic component is mounted on a second surface of the circuit board. The first electronic component and the second electronic component are arranged in an arrangement direction. The heat conduction member is disposed between the housing and a first component-opposite portion of the circuit board opposite to the first electronic component, and between the housing and a second component-opposite portion of the circuit board opposite to the second electronic component. The circuit board has a through hole in a formation area between the first electronic component and the second electronic component. The heat conduction member integrally covers each of the first component-opposite portion and the second component-opposite portion and the formation area of the circuit board.
    Type: Application
    Filed: April 20, 2015
    Publication date: November 12, 2015
    Inventor: Masafumi UMENO
  • Publication number: 20150268299
    Abstract: A gas-sensor control device includes a sweep circuit, a return sweep circuit, and a control portion. The sweep circuit energizes a detection current to flow through an oxygen sensor to calculates an impedance of the oxygen sensor. The return sweep circuit energizes a neutralization current to flow through the oxygen sensor in a direction opposite to a direction of the detection current, so as to remove electricity from the oxygen sensor that is energized by the detection current. The control portion executes a detection of an off failure of the sweep circuit and the return sweep circuit, only based on a sensor voltage acquired in a time period where the neutralization current flows through the oxygen sensor, and a threshold.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 24, 2015
    Inventor: Masafumi UMENO