Patents by Inventor Masaharu Marumoto

Masaharu Marumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10830186
    Abstract: A premixed compression ignition engine system includes an engine, a fuel injector, a water injector, and a controller. The controller conducts: a compression-stroke mid-period injection that causes a fuel injector to inject fuel to form a fuel-air mixture in a surrounding space of a combustion chamber; a compression top-dead-center injection that causes the fuel injector to inject fuel to form a fuel-air mixture in the central space of the combustion chamber after the compression-stroke mid-period injection; and a water injection that causes a water injector to inject water to the surrounding space of the combustion chamber at a timing from commencement of the compression-stroke mid-period injection to commencement of the compression top-dead-center injection.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: November 10, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Tohru Hokazono, Kota Maekawa, Yoshihisa Nakamoto, Masaharu Marumoto, Yusuke Koike, Ryohei Ono
  • Publication number: 20200040850
    Abstract: A premixed compression ignition engine system includes an engine, a fuel injector, a water injector, and a controller. The controller conducts: a compression-stroke mid-period injection that causes a fuel injector to inject fuel to form a fuel-air mixture in a surrounding space of a combustion chamber; a compression top-dead-center injection that causes the fuel injector to inject fuel to form a fuel-air mixture in the central space of the combustion chamber after the compression-stroke mid-period injection; and a water injection that causes a water injector to inject water to the surrounding space of the combustion chamber at a timing from commencement of the compression-stroke mid-period injection to commencement of the compression top-dead-center injection.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 6, 2020
    Inventors: Tohru Hokazono, Kota Maekawa, Yoshihisa Nakamoto, Masaharu Marumoto, Yusuke Koike, Ryohei Ono
  • Patent number: 8408180
    Abstract: Disclosed is a control apparatus for a turbocharged diesel engine. The control apparatus comprises an engine start controller (10) operable, when an engine restart condition associated with a demand for vehicle start is satisfied, to execute a split-injection control to perform a main injection for injecting fuel at a timing around a top dead center of a compression stroke, and a post injection for injecting fuel in an expansion stroke following the main injection, during the engine restart control, and, when an engine restart condition nonassociated with the demand for vehicle start is satisfied, to execute the engine restart control to perform only the main injection without executing the split-injection control. This makes it possible to optimize the engine restart control to be execute in response to satisfaction of the engine restart condition, depending on the presence or absence of the demand for vehicle start.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: April 2, 2013
    Assignee: Mazda Motor Corporation
    Inventors: Masahiro Nagoshi, Masayuki Tetsuno, Masaharu Marumoto
  • Publication number: 20110239645
    Abstract: Disclosed is a control apparatus for a turbocharged diesel engine. The control apparatus comprises an engine start controller (10) operable, when an engine restart condition associated with a demand for vehicle start is satisfied, to execute a split-injection control to perform a main injection for injecting fuel at a timing around a top dead center of a compression stroke, and a post injection for injecting fuel in an expansion stroke following the main injection, during the engine restart control, and, when an engine restart condition nonassociated with the demand for vehicle start is satisfied, to execute the engine restart control to perform only the main injection without executing the split-injection control. This makes it possible to optimize the engine restart control to be execute in response to satisfaction of the engine restart condition, depending on the presence or absence of the demand for vehicle start.
    Type: Application
    Filed: February 11, 2011
    Publication date: October 6, 2011
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Masahiro NAGOSHI, Masayuki TETSUNO, Masaharu MARUMOTO
  • Patent number: 7628015
    Abstract: There is provided a method for controlling an electrically driven supercharger of an internal combustion engine. The method comprises operating the supercharger at a first speed during a first engine operating condition. The method further comprises operating the supercharger at a second speed during a second engine operating condition, the second speed being lower than the first speed and increasing as the capacity of the electric power source decreases. According to the method, during a transition from the second engine operating condition to the first engine operating condition, the speed of the supercharger is increased from the second speed to the first speed. At that time, the second speed is increased as the capacity of the electric power source decreases, and as a result, the supercharger speed increase that results from the transition may become smaller.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: December 8, 2009
    Assignee: Mazda Motor Corporation
    Inventors: Masaharu Marumoto, Yoshihisa Nakamoto, Naoyuki Yamagata, Mikihito Fujii
  • Publication number: 20070051349
    Abstract: There is provided a method for controlling an electrically driven supercharger of an internal combustion engine. The method comprises operating the supercharger at a first speed during a first engine operating condition. The method further comprises operating the supercharger at a second speed during a second engine operating condition, the second speed being lower than the first speed and increasing as the capacity of the electric power source decreases. According to the method, during a transition from the second engine operating condition to the first engine operating condition, the speed of the supercharger is increased from the second speed to the first speed. At that time, the second speed is increased as the capacity of the electric power source decreases, and as a result, the supercharger speed increase that results from the transition may become smaller.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 8, 2007
    Applicant: Mazda Motor Corporation
    Inventors: Masaharu Marumoto, Yoshihisa Nakamoto, Naoyuki Yamagata, Mikihito Fujii