Patents by Inventor Masahide Kobayashi

Masahide Kobayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190284408
    Abstract: A curable composition is provided comprising an acrylamide compound represented by the following general formula (1): wherein, X represents a branched alkylene group having 2 to 5 carbon atoms, and Y represents the following general formula (2): wherein, R represents an alkyl group having 1 to 4 carbon atoms, and * represents a binding site with X.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 19, 2019
    Inventors: Takenori SUENAGA, Masahide KOBAYASHI, Mitsunobu MORITA, Soh NOGUCHI, Takashi OKADA
  • Publication number: 20190165541
    Abstract: A laser element and a modulator element respectively include first and second mesa portions provided to be connected above a substrate. The first and second mesa portions are formed using individual mask films (dielectric masks). In the first mesa portion, a p-type first clad layer not containing Al as the uppermost layer thereof covers the upper surface and each of the side surfaces of a multi-layer body (including an n-type optical guide layer, an active layer, a p-type optical guide layer, and a p-type semiconductor layer). In the first mesa portion, the multi-layer body including the semiconductor layers containing Al is covered with the p-type first clad layer not containing Al. This can prevent unneeded aluminum oxide from being generated and improve the crystallinities of the constituent layers of the second mesa portion. It is possible to maintain excellent optical coupling between the first and second mesa portions.
    Type: Application
    Filed: October 3, 2018
    Publication date: May 30, 2019
    Inventors: Isao WATANABE, Masahide KOBAYASHI, Junichiro SHIMIZU
  • Publication number: 20190118852
    Abstract: There is a vehicle operation system (300) which includes a driving operating elements (302) that receive an operation of a driver for acceleration and deceleration or steering of a vehicle, and a control unit (301) that controls holding mechanisms (303) such that the driving operating elements are stored with a change in state of the holding mechanisms on the basis of an execution state of automated driving executed in a vehicle.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 25, 2019
    Inventors: Takeyuki Suzuki, Yasutaka Innami, Yuichi Yamazaki, Masahide Kobayashi
  • Patent number: 10173203
    Abstract: A method is provided for producing an aluminosilicate catalyst. The method includes a first phosphorus treatment step of treating a crystalline aluminosilicate with a first phosphorus compound, a mixing and firing step of mixing the phosphorus-treated crystalline aluminosilicate obtained in the first phosphorus treatment step with a binder and then performing firing to form an aluminosilicate mixture, and a second phosphorus treatment step of treating the aluminosilicate mixture with a second phosphorus compound.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: January 8, 2019
    Assignee: JXTG Nippon Oil & Energy Corporation
    Inventors: Yasuyuki Iwasa, Masahide Kobayashi, Shinichiro Yanagawa
  • Patent number: 10137441
    Abstract: A method is provided for producing an aluminosilicate catalyst. The method includes a first phosphorus treatment step of treating a crystalline aluminosilicate with a first phosphorus compound, a mixing and firing step of mixing the phosphorus-treated crystalline aluminosilicate obtained in the first phosphorus treatment step with a binder and then performing firing to form an aluminosilicate mixture, and a second phosphorus treatment step of treating the aluminosilicate mixture with a second phosphorus compound.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: November 27, 2018
    Assignee: JXTG Nippon Oil & Energy Corporation
    Inventors: Yasuyuki Iwasa, Masahide Kobayashi, Shinichiro Yanagawa
  • Patent number: 10087376
    Abstract: A catalyst is provided for production of monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst contains crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure, and intermediate-pore zeolite having a 10-membered ring structure.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: October 2, 2018
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Kazuaki Hayasaka
  • Patent number: 10077401
    Abstract: A polymerizable compound having high polymerization reactivity, a high conversion ratio and high solubility in a liquid crystal composition, a polymerizable composition containing the compound, a liquid crystal composite prepared from the composition and a liquid crystal display device having the composite are shown. The polymerizable compound has three or four rings in a serial arrangement and not being mutually condensed, and has three or more polymerizable groups among which at least one is bonded with a ring which is not an either terminal of the three or four rings. The polymerizable composition contains the above polymerizable compound and a liquid crystal composition. The liquid crystal composite is prepared from the above polymerizable composition, and the liquid crystal display device has the liquid crystal composite.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 18, 2018
    Assignees: JNC CORPORATION, JNC PETROCHEMICAL CORPORATION
    Inventors: Masahide Kobayashi, Yasuyuki Gotoh, Takahiro Kobayashi
  • Patent number: 10047293
    Abstract: To provide a liquid crystal compound satisfying at least one of high stability to heat, light and so forth, a high clearing point, low minimum temperature of a liquid-crystal phase, small viscosity, suitable optical anisotropy, large dielectric anisotropy, a suitable elastic constant and excellent compatibility with other liquid-crystal compounds, a liquid crystal composition containing the compound and a liquid crystal display device including the composition. A compound is represented by formula (1-1). For example, R1 and R2 are independently hydrogen, alkyl having 1 to 10 carbons, alkenyl having 3 to 10 carbons and alkoxy having 1 to 9 carbons; ring A1 is 1,4-cyclohexylene; ring A2 and ring A3 are independently 1,4-cyclohexylene or 1,4-phenylene; Z1 is a single bond or —(CH2)2; l is 0 or 1, m and n are 0, 1 or 2, a sum: l+m+n is 0, 1 or 2; x is 0 or 1.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: August 14, 2018
    Assignees: JNC CORPORATION, JNC PETROCHEMICAL CORPORATION
    Inventor: Masahide Kobayashi
  • Patent number: 9862897
    Abstract: The method for producing a monocyclic aromatic hydrocarbon includes a cracking and reforming reaction step in which a catalyst for producing a monocyclic aromatic hydrocarbon containing crystalline aluminosilicate which has been subjected to a heat treatment in an atmosphere containing water vapor in advance is loaded into a fixed-bed reactor, and a feedstock oil having a 10 volume % distillate temperature of 140° C. or higher and a 90 volume % distillate temperature of 390° C. or lower is brought into contact with the catalyst to cause a reaction, so as to obtain a product containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: January 9, 2018
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasuyuki Iwasa, Shinichiro Yanagawa, Masahide Kobayashi
  • Patent number: 9845433
    Abstract: A method for producing an olefin and a monocyclic aromatic hydrocarbon of the present invention includes a dicyclopentadiene removal treatment step of removing dicyclopentadienes having a dicyclopentadiene skeleton from a feedstock oil which is a thermally-cracked heavy oil obtained from an apparatus for producing ethylene and which has a 90 volume % distillate temperature, as a distillation characteristic, of 390° C. or lower; and a cracking and reforming reaction step of obtaining a product containing an olefin and a monocyclic aromatic hydrocarbon by bringing the feedstock oil having a content of dicyclopentadienes adjusted to 10% by weight or less by treating a part or all of the feedstock oil through the dicyclopentadiene removal step into contact with a catalyst and reacting the feedstock oil.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: December 19, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yukihiro Yoshiwara, Ryoji Ida
  • Publication number: 20170355167
    Abstract: A fuel system component used to supply a fuel to a fuel tank or used to discharge the fuel from the fuel tank comprises a first resin layer; and a second resin layer formed in a similar color to that of the first resin layer and configured to include a welding portion that is welded to the first resin layer and an exposed portion that is not adjacent to or in contact with the first resin layer. A belt-like portion is formed on a first resin layer-side surface of the exposed portion to be parallel to a boundary between the welding portion and the exposed portion and is configured to include at least one of a concave and a convex extended intermittently or continuously.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 14, 2017
    Inventors: Yoshihiro SAKATA, Mayuki TORIUMI, Hideyuki TSUZUKI, Noboru HOSOE, Shota TAKASE, Shinji SHIMOKAWA, Masahide KOBAYASHI
  • Patent number: 9828309
    Abstract: Method for producing monocyclic aromatic hydrocarbons includes a cracking and reforming reaction step of obtaining products containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by bringing the feedstock oil into contact with a catalyst for producing monocyclic aromatic hydrocarbons containing crystalline aluminosilicate to cause a reaction, a catalyst separation step of separating and removing the catalyst for producing monocyclic aromatic hydrocarbons together with tricyclic aromatic hydrocarbons contained in the products from a mixture of the products and a small amount of the catalyst for producing monocyclic aromatic hydrocarbons carried by the products, both of which are derived in the cracking and reforming reaction step, and a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms which are separated from the products formed in the cracking and reforming reaction step
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 28, 2017
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yuichiro Fujiyama, Yasuyuki Iwasa, Ryoji Ida, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Patent number: 9827558
    Abstract: A catalyst is provided for production of hydrocarbons including monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and aliphatic hydrocarbons having a carbon number of 3 to 4 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst includes crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: November 28, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Kazuaki Hayasaka
  • Patent number: 9815750
    Abstract: A catalyst for producing monocyclic aromatic hydrocarbons, used for producing monocyclic aromatic hydrocarbons of 6 to 8 carbon number from a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and an end point temperature of not more than 400° C., wherein the catalyst contains a crystalline aluminosilicate, gallium and/or zinc, and phosphorus, the molar ratio between silicon and aluminum (Si/Al ratio) in the crystalline aluminosilicate is not more than 100, the molar ratio between the phosphorus supported on the crystalline aluminosilicate and the aluminum of the crystalline aluminosilicate (P/Al ratio) is not less than 0.01 and not more than 1.0, and the amount of gallium and/or zinc is not more than 1.2% by mass based on the mass of the crystalline aluminosilicate.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: November 14, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yuko Aoki, Kazuaki Hayasaka
  • Patent number: 9815047
    Abstract: The catalyst for producing aromatic hydrocarbon is for producing monocyclic aromatic hydrocarbon having 6 to 8 carbon number from oil feedstock having a 10 volume % distillation temperature of 140° C. or higher and a 90 volume % distillation temperature of 380° C. or lower and contains crystalline aluminosilicate and phosphorus. A molar ratio (P/Al ratio) between phosphorus contained in the crystalline aluminosilicate and aluminum of the crystalline aluminosilicate is from 0.1 to 1.0. The production method of monocyclic aromatic hydrocarbon is a method of bringing oil feedstock having a 10 volume % distillation temperature of 140° C. or higher and a 90 volume % distillation temperature of 380° C. or lower into contact with the catalyst for producing monocyclic aromatic hydrocarbon.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: November 14, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yasuyuki Iwasa, Ryoji Ida
  • Patent number: 9809507
    Abstract: A catalyst for producing monocyclic aromatic hydrocarbons of 6 to 8 carbon number from a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and an end point temperature of not more than 400° C., or a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and a 90 volume % distillation temperature of not more than 360° C., wherein the catalyst contains a crystalline aluminosilicate, gallium and/or zinc, and phosphorus, and the amount of phosphorus supported on the crystalline aluminosilicate is within a range from 0.1 to 1.9% by mass based on the mass of the crystalline aluminosilicate; and a method for producing monocyclic aromatic hydrocarbons, the method involving bringing a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and an end point temperature of not more than 400° C., or a feedstock oil having a 10 volume % distillation temperature of at least 140° C.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: November 7, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yuko Aoki, Kazuaki Hayasaka
  • Patent number: 9776934
    Abstract: A method of producing monocyclic aromatic hydrocarbons includes bringing a light feedstock oil having a 10 vol % distillation temperature of 140° C. to 205° C. and a 90 vol % distillation temperature of 300° C. or lower, which has been prepared from a feedstock oil having a 10 vol % distillation temperature of 140° C. or higher and a 90 vol % distillation temperature of 380° C. or lower, into contact with a catalyst for monocyclic aromatic hydrocarbon production containing a crystalline aluminosilicate, in which a content ratio of monocyclic naphthenobenzenes in the light feedstock oil is adjusted by distillation of the feedstock oil such that the content ratio of monocyclic naphthenobenzenes in the light feedstock oil is higher than a content ratio of monocyclic naphthenobenzenes in the feedstock oil.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: October 3, 2017
    Assignee: JX Nippon Oil Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Ryoji Ida, Yasuyuki Iwasa
  • Publication number: 20170189894
    Abstract: A method is provided for producing an aluminosilicate catalyst. The method includes a first phosphorus treatment step of treating a crystalline aluminosilicate with a first phosphorus compound, a mixing and firing step of mixing the phosphorus-treated crystalline aluminosilicate obtained in the first phosphorus treatment step with a binder and then performing firing to form an aluminosilicate mixture, and a second phosphorus treatment step of treating the aluminosilicate mixture with a second phosphorus compound.
    Type: Application
    Filed: April 3, 2015
    Publication date: July 6, 2017
    Inventors: Yasuyuki IWASA, Masahide KOBAYASHI, Shinichiro YANAGAWA
  • Patent number: 9670420
    Abstract: A method for producing a monocyclic aromatic hydrocarbon of the present invention includes a cracking and reforming reaction step of obtaining a product containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms by bringing a feedstock oil having a 10 volume % distillate temperature of 140° C. or higher and a 90 volume % distillate temperature of 390° C. or lower and a saturated hydrocarbon having 1 to 3 carbon atoms into contact with a catalyst for producing a monocyclic aromatic hydrocarbon containing crystalline aluminosilicate, which is loaded into a fixed-bed reactor, and reacting the feedstock oil and the saturated hydrocarbon.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 6, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yukihiro Yoshiwara
  • Patent number: 9663717
    Abstract: A liquid crystal compound is provided that satisfies at least one physical property such as high stability to heat and light, a high clearing point, low minimum temperature of liquid crystal phase, small viscosity, suitable optical anisotropy, large dielectric anisotropy, suitable elastic constant and compatibility with other liquid crystal compounds. A liquid crystal composition containing the compound and a liquid crystal display device including the composition is also provided. The liquid crystal compound is represented by formula (1) in which R1 is alkyl having 1 to 10 carbons, rings A1, A3 and A4 are independently 1,4-phenylene, ring A2 is a divalent group represented by any one of formulas (Ch), (Cx) and (ch), Z1, Z2, Z3 and Z4 are a single bond, X1 is fluorine, L1 and L2 are fluorine, a, b and c are independently 0 or 1, and a sum of a, b and c is 0 or 1.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: May 30, 2017
    Assignees: JNC CORPORATION, JNC PETROCHEMICAL CORPORATION
    Inventors: Takahiro Kubo, Masahide Kobayashi