Patents by Inventor Masahiko Mizutani

Masahiko Mizutani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8098678
    Abstract: Disclosed herewith is a PON system and a bandwidth controlling method capable of controlling congestion with use of an upstream bandwidth in a PON section efficiently when congestion occurs in a gateway (GW) connected to an OLT. An OLT connected to a plurality of ONUs through a passive optical network (PON) and to a gateway (GW) through a communication line, when receiving a congestion occurrence notice indicating a congestion occurred output number from a GW, identifies the identifier of the ONU that is using a GW output line having the congestion output port number and shifts the bandwidth controlling of the PON section in a normal mode for allocating a bandwidth to each ONU normally to that in a bandwidth suppression mode for allocating a congestion time allowable bandwidth that is less than the current bandwidth to the ONU having the identified ONU identifier and a bandwidth to each of other ONUs according to its transmission queue length.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: January 17, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hideki Endo, Masahiko Mizutani, Masayuki Takase, Kenichi Sakamoto, Yoshihiro Ashi, Takayuki Kanno, Nobuyuki Yamamoto
  • Patent number: 8095004
    Abstract: In a passive optical network system, in order that by measuring a transmission distance and a transmission time between an OLT and an ONU in operation of the system, if the distance or the time is short, communication is conducted at a high transmission speed to increase a capacity of user; if the distance or the time is long, communication is conducted at a low transmission speed to increase the capacity of user communicating in a state in which a predetermined quality is secured, a main station includes a signal communication circuit to communicate with subsidiary stations at a first or second transmission speed and a controller to measure a transmission distance or a transmission time between the main station and each subsidiary station. Based on a result of the measurement, the controller selects a transmission speed for communication with the subsidiary station.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: January 10, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Yusuke Yajima
  • Patent number: 8089865
    Abstract: Provided is a multicast path management method for a connectionless communication. Also provided is a path protection function which is effective when a path has failed. A network is formed by a trunk and a branch path. The multicast path is managed by end-to-end and when a failure has occurred, an instruction is issued from the apex of the multicast tree to respective end-to-end paths so as to switch from the currently used channel to a backup path. Thus, upon failure, an individual path protection can be performed without affecting other parts of the tree to which the same multicast flow as the defective path is distributed or the distribution state of the multicast flow.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: January 3, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Atsushi Iwamura, Yoshihiro Ashi, Masayuki Takase, Hideki Endo
  • Publication number: 20110268435
    Abstract: Switching process at the occurrence of a path trouble is performed more quickly to reduce the number of packet discards during a traffic transition from a currently used system path to a standby system path within a section to be protected. An OLT (210-W) refers to the DBA information of a PON section and, if receiving no CCM frame at a timing at which the same should be received, then determines that some trouble has occurred on the path (S801) and transmits, to an OAM-compliant NE (200-Z), an application-for-switching frame (1501) to notify the OAM-compliant NE (200-Z) of the abnormal condition. The OAM-compliant NE (200-Z) monitors the occurrence of the trouble within the PON section nearly in real time, starts a switching process (S802) and generates and transmits a standby-system delivery request (321) (S302, S803). An OAM-compliant NE (200-A) switches the communication path to the standby-system passing through an OLT (210-P).
    Type: Application
    Filed: January 13, 2009
    Publication date: November 3, 2011
    Inventors: Masahiko Mizutani, Yusuke Yajima, Nobuyuki Yamamoto, Yoshihiro Ashi
  • Publication number: 20110241025
    Abstract: A lighting device including a metal substrate to prevent temperature rise of LED chip is offered. The lighting device includes the metal substrate, an anode or cathode electrode of the LED chip disposed on the metal substrate, brazing materials connecting the LED chip and the metal substrate, and a groove formed in the anode or cathode electrode. Forming the groove can prevent an occurrence of a crack in the brazing materials. Also, a lighting device includes the metal substrate, an anode and cathode electrode of the LED chip disposed on the metal substrate and brazing materials connecting the LED chip and the metal substrate. Further, a slit is formed in the metal substrate between the anode and cathode electrode. Forming the slit in the metal substrate can prevent an occurrence of a crack in the brazing materials.
    Type: Application
    Filed: October 15, 2010
    Publication date: October 6, 2011
    Applicants: SANYO ELECTRIC CO., LTD., SANYO SEMICONDUCTOR CO., LTD.
    Inventors: Noriaki SAKAMOTO, Naoki Tanahashi, Tsuyoshi Hasegawa, Takaya Kusabe, Masahiko Mizutani, Hideki Mizuhara, Yoshinari Sakuma
  • Publication number: 20110243554
    Abstract: When a neighbor ONU receives a signal with light intensity high enough to secure communication between an OLT and a remote ONU, the light intensity may be excessively high to damage a receiver of the neighbor ONU. In order to avoid such a problem, each ONU is notified of a downstream signal transmission plan (downstream light intensity map) prior to transmission of a downstream signal. Each ONU receives the downstream light intensity map (light intensity transmission schedule of downstream signal) in advance. Thus, the neighbor ONU can block or attenuate an optical signal addressed to the remote ONU, and the remote ONU can determine normal operation even when the remote ONU cannot receive a signal addressed to the neighbor ONU. Thus, the remote ONU can be prevented from issuing a wrong error signal.
    Type: Application
    Filed: March 25, 2011
    Publication date: October 6, 2011
    Inventors: MASAO NIIBE, MASAHIKO MIZUTANI, SHINYA FUJIOKA
  • Patent number: 8027258
    Abstract: Communication time period measuring frames are simultaneously sent from an OAM adaptive device on a transmission side, to both a working path and a protection path. In an OAM adaptive device on a reception side, reception times of the frames having arrived from both the paths are checked so as to measure a time period difference between both the paths. The time period difference is fed back to a logic distance adjustment function of each PON section to determine required communication time periods of the PON sections respectively included in a working system and a protection system. Communication time periods of the working system and the protection system in a packet communication network are arbitrated in order to decrease a packet loss at line switching in a packet relaying network.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: September 27, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Yusuke Yajima, Takayuki Kanno, Takeshi Yasuda
  • Patent number: 8027586
    Abstract: A passive optical network (PON) system which enables plural types of ONUs having different signal transmission speeds to be connected to one OLT. An optical line terminating apparatus (OLT) connected to plural types of ONUs having different signal transmission speeds through an optical distribution network includes an optical transmitter-receiver connected to the optical distribution network, a transmission/reception line interface connected to a wide area network, a downstream frame processing section for converting a packet received by the transmission/reception line interface from the wide area network into a downstream frame containing identification information on a destination ONU in a header, and a downstream transmission controller for modulating the downstream frame at a speed corresponding to a signal transmission speed of the destination ONU and outputting the modulated frame to an electrical/optical converter connected to the optical transmitter-receiver.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: September 27, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroki Ikeda, Masahiko Mizutani, Toshiki Sugawara, Shinobu Gohara
  • Patent number: 7962037
    Abstract: Provided is an ONU that suppresses transmission of a useless multicast control message to a PON section and enables a communication bandwidth of the PON section to be effectively used. The ONU of the PON system has a multicast group management table that shows a correspondence between a multicast group identifier and an address of a user terminal participating in a multicast group. When the ONU receives a request message of participation in the multicast group from the user terminal, the ONU registers the correspondence between the multicast group identifier indicated by the received message and the user terminal address. A new received message is deleted without being sent to the OLT if another user terminal address is registered already, along with a correspondence with the same multicast group identifier, in the multicast group management table.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 14, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Takeshi Shibata, Tohru Kazawa, Yoshihiro Ashi, Masanobu Kobayashi, Masayuki Takase
  • Patent number: 7936991
    Abstract: An optical access communication apparatus and an optical access communication system for the coexistence of two wideband PON systems without using an expensive optical device or module. A low-speed PON and a high-speed PON have a same upstream wavelength, and an OLT receives optical signals by a same optical receiver in the two systems, converts the optical signals into electric signals, amplifies the electric signals, branches the amplified electric signals, and processes the branched signals by clock and data recovery sections of bit rates corresponding to the two PON systems, thereby achieving an optical communication apparatus and an optical communication system for constructing a simple and low-cost triple-play service system of excellent transmission quality.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: May 3, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Toshiki Sugawara, Masahiko Mizutani, Hiroki Ikeda, Kenichi Sakamoto
  • Publication number: 20110085799
    Abstract: In the communication system, a master station is coupled to slave stations by a fiber network comprising a splitter and a reach extender, the master station includes a first bandwidth control section which determines, based on a request from each slave station, a first data amount of a signal transmitted in a first cycle, the reach extender includes: a distance measurement section which measures a distance or a time between the reach extender and each slave station; and a second bandwidth control section which determines a second data amount and transmission timing of a signal based on a request from each slave station and the first data amount, and each slave station transmits a signal with a data amount, which the first bandwidth control section determined based on a data amount and transmission timing determined in second cycles, to the master station in the first cycle.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 14, 2011
    Inventor: MASAHIKO MIZUTANI
  • Patent number: 7908390
    Abstract: A packet forwarding apparatus and network system for providing different types of bandwidth control services to the user; in which a packet forwarding apparatus for transferring data comprises an interface unit for sending and receiving packets, and a traffic shaper for controlling the packet transmission timing and a packet switch for sending an output to the interface unit as the destination of the received packet; and the traffic shaper uses a token bucket algorithm when transmitting a packet to guarantee the minimum frame rate, and uses a leaky bucket algorithm when limiting the peak frame rate.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: March 15, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Masayuki Takase, Yoshihiro Ashi, Masahiko Mizutani, Tohru Kazawa, Kenichi Sakamoto, Taishi Shinagawa
  • Publication number: 20100272436
    Abstract: In the configuration of an optical communication system interconnecting a parent station and a plurality of child stations via an optical fiber network equipped with an optical splitter, RE is provided having a measuring unit for measuring a transmission distance or time to a child station, a determining unit for determining a timing when a child station transmits a signal, in accordance with a transmission bandwidth request from the child station, and a signal processing unit for processing a signal received from a child station and transmitting the processed signal to the parent station. When a burst signal is received from each child station at the determined timing, a portion of the header of the burst signal is deleted, and a dummy signal is inserted into the deleted area and a gap area between received burst signals to convert the burst signals into a series of signals to be sent to the parent station.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 28, 2010
    Inventors: Masahiko Mizutani, Yusuke Yajima, Akihiko Tsuchiya
  • Publication number: 20100226244
    Abstract: Provided is a multicast path management method for a connectionless communication. Also provided is a path protection function which is effective when a path has failed. A network is formed by a trunk and a branch path. The multicast path is managed by end-to-end and when a failure has occurred, an instruction is issued from the apex of the multicast tree to respective end-to-end paths so as to switch from the currently used channel to a backup path. Thus, upon failure, an individual path protection can be performed without affecting other parts of the tree to which the same multicast flow as the defective path is distributed or the distribution state of the multicast flow.
    Type: Application
    Filed: August 4, 2006
    Publication date: September 9, 2010
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD.
    Inventors: Masahiko Mizutani, Atsushi Iwamura, Yoshihiro Ashi, Masayuki Takase, Hideki Endo
  • Patent number: 7773880
    Abstract: An optical access system capable of avoiding cutoffs or interruption in the periodically transmitted signals that occur during the ranging time is provided. A first method to avoid signal cutoffs is to stop periodic transmit signals at the transmitter during the ranging period, and transmit all the periodic transmit signals together when the ranging ends, and buffer the signals at the receiver to prepare for ranging. A second method is to fix definite periods ahead of time for performing ranging, then cluster the multiple periodic transmit signals together in sets at the transmitter and send them, and then disassemble those sets back into signals at the receiver. The transmitting and receiving is then controlled so that the transmit periods do not overlap with the ranging periods. In this way an optical access system is provided that can send and receive signals requiring periodic transmissions without interruption even during ranging operation.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: August 10, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Yoshihiro Ashi, Tohru Kazawa, Ryosuke Nishino, Masayuki Takase, Masahiko Mizutani
  • Publication number: 20100178051
    Abstract: An optical communication system has a master station and a plurality of slave stations connected thereto via an optical fiber network, which is provided with an optical splitter and a relay unit which relays signals transmitted/received between the master station and the plurality of slave stations. The master station includes a first controller for performing ranging between the master station and the relay unit, and the relay unit includes a second controller for performing ranging between the relay unit and the plurality of slave stations. The master station determines, on the basis of the results of ranging performed by the first and second controllers as well as reports from the slave stations, timings for the slave stations to transmit signals to the master station, and receives signals multiplexed through the optical fiber network from the slave stations.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 15, 2010
    Inventors: Masahiko MIZUTANI, Yusuke Yajima
  • Publication number: 20100158527
    Abstract: In a PON system, an OLT periodically transmits a channel resource information block specifying a carrier wavelength and a spreading code on a first downstream channel to which a spread-spectrum spreader having a first spreading code is applied; one of ONUs receives the channel resource information block with a spread-spectrum despreader having the first spreading code and transmits a connection request to the OLT, using the carrier wavelength and the spreading code specified by the channel resource information block; the OLT having received the connection request transmits a new channel resource information block specifying a carrier wavelength and a spreading code to be used on an upstream data channel to the requester ONU through the first channel; and the requester ONU transmits data, using the carrier wavelength and the spreading code specified by the new channel resource information block.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 24, 2010
    Applicant: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Toshiki Sugawara, Tohru Kazawa, Yoshihiro Ashi
  • Publication number: 20100150554
    Abstract: A PON system capable of utilizing the bandwidth of an optical transmission channel in the PON section. In a PON system including an OLT and a plurality of ONUs, the OLT has: a downstream frame processing unit that removes at least part of the header information in a layer 2 header from a downstream frame received from a wide area network, and converts the remaining frame portion into a frame having a header specific to the PON section; and a downstream frame processing unit that extracts a downstream frame portion to be transferred to a user terminal, from a received frame from a PON, and adds the layer 2 header information deleted in the OLT.
    Type: Application
    Filed: February 16, 2010
    Publication date: June 17, 2010
    Inventors: Masahiko Mizutani, Takeshi Shibata, Tohru Kazawa, Yoshihiro Ashi, Masanobu Kobayashi, Hideki Endo
  • Publication number: 20100089194
    Abstract: A bearing assembly for a worm drive supporting the worm of the worm drive with washer-shaped thrust slide bearings and bush-shaped radial slide (sintered oil-containing bearings) bearings. The thrust slide bearings are made of a resin containing 95 to 99.9 wt % of polyetheretherketone resin, which is an aromatic polyetherketone resin. Wear of the thrust slide bearings is reduced and its durability is improved, thereby preventing vibration and noise of the worm drive as well as improving its durability.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 15, 2010
    Inventors: Masato SHIMODA, Masahiko Mizutani
  • Publication number: 20100086304
    Abstract: A transmitting apparatus includes a plurality of code spreaders different in spreading code, a reception processing unit that selectively distributes transmission data to the plurality of code spreaders, a plurality of optical transmitters each of which that transmit a code-spread signal to an optical fiber as a CDMA optical signal of a carrier wavelength different from that of the other optical transmitters, and a signal multiplexing unit that selectively supplies outputs of the plurality of code spreaders to the plurality of optical transmitters, and a receiving apparatus includes an optical receiver that receives a wavelength-division-multiplexed CDMA optical signal from the optical fiber, and a plurality of despreaders connected to the optical receiver and different in spreading code, wherein each of the despreaders reproduces a CDMA signal corresponding to its spreading code from an output signal of the optical receiver.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 8, 2010
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD.
    Inventors: Masahiko Mizutani, Yoshihiro Ashi, Shinya Sasaki, Tohru Kazawa