Patents by Inventor Masahiko Shimizu

Masahiko Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10868066
    Abstract: A solid-state imaging apparatus includes: a solid-state imaging device photoelectrically converting light taken by a lens; and a light shielding member shielding part of light incident on the solid-state imaging device from the lens, wherein an angle made between an edge surface of the light shielding member and an optical axis direction of the lens is larger than an incident angle of light to be incident on an edge portion of the light shielding member.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: December 15, 2020
    Assignee: Sony Corporation
    Inventors: Toshiaki Iwafuchi, Masahiko Shimizu, Hirotaka Kobayashi
  • Patent number: 10815181
    Abstract: Provided is a method for industrially efficiently producing acetic acid yielding a good potassium permanganate test result, without costing much. The acetic acid production method according to the present invention includes a carbonylation step, a separation step, a recycling step, a liquid-liquid separation step, and an acetaldehyde-removing step of treating an object, where the object is selected from at least a part of at least one of the aqueous phase and the organic phase on the basis of a factor(s) selected from a liquid temperature in the liquid-liquid separation in the liquid-liquid separation step, an acetaldehyde concentration in at least one of the aqueous phase and the organic phase, an acetaldehyde partition coefficient, a methyl acetate concentration in at least one of the aqueous phase and the organic phase, and a methyl acetate partition coefficient. In the first acetic acid stream in the separation step, a crotonaldehyde concentration is controlled to 2.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: October 27, 2020
    Assignee: DAICEL CORPORATION
    Inventor: Masahiko Shimizu
  • Publication number: 20200316878
    Abstract: A composite material lamination device laminates a composite material on a lamination surface, which is an outer surface of a mold that includes one side surface and another side surface, or an outer surface of a structure disposed on the outer surface of the mold. The composite material lamination device comprises: a first robot that is disposed on the one side surface side of the mold to laminate a portion of the composite material on a portion of the lamination surface; and a second robot disposed on the other side surface side of the mold to laminate the remaining portion of the composite material on the remaining portion of the lamination surface.
    Type: Application
    Filed: March 8, 2019
    Publication date: October 8, 2020
    Inventors: Akihito SUZUKI, Kazuki ISHIDA, Kohei MUTO, Masahiko SHIMIZU, Tsuyoshi OKAWARA, Kenji MURAKAMI
  • Patent number: 10781155
    Abstract: Provided are a method and an acetic acid production method, each of which can effectively restrain or prevent local corrosion of an inner wall of a process unit and/or line and can lower a formic acid concentration in an acetic acid product. The method produces acetic acid by a process including (1) a reaction step and (A) a separation step. In the reaction step (1), methanol is carbonylated with carbon monoxide in the presence of a catalytic system, acetic acid, methyl acetate, and water, where the catalytic system includes a metal catalyst and methyl iodide. In the separation step (A), the reaction mixture resulting from the reaction step is separated, using at least one selected from evaporators and distillation columns, into a stream containing the catalyst, an acetic acid stream rich in acetic acid, and a stream rich in lower-boiling components as compared with the acetic acid stream.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: September 22, 2020
    Assignee: DAICEL CORPORATION
    Inventor: Masahiko Shimizu
  • Patent number: 10759730
    Abstract: Provided is an acetic acid production method that enables, in a scrubbing system, efficient separation and obtaining of methyl iodide and an absorbing solvent; restrainment of corrosion of the interior of a distillation column; efficient separation between and recovery of hydrogen iodide and methyl iodide; or sufficient recovery of hydrogen iodide. The acetic acid production method according to the present invention includes a first absorption step and a second absorption step. In the first absorption step, an offgas is brought into contact with a first absorbent to allow the first absorbent to absorb an iodine compound from the offgas, to give a first gas, where the first absorbent includes at least one of C2 or higher alcohols, esters of C3 or higher carboxylic acids, esters between carboxylic acids and C2 or higher alcohols, ethers, ketones, water, and basic aqueous solutions.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: September 1, 2020
    Assignee: DAICEL CORPORATION
    Inventor: Masahiko Shimizu
  • Patent number: 10752572
    Abstract: Provided is a method for industrially efficiently producing acetic acid that yields a good potassium permanganate test result, without enormous cost. A light ends column (first distillation column) is operated with a reflux ratio at a specific level or more, a distillation column (crotonaldehyde-removing column) is provided for treating an organic phase of an overhead condensate from the light ends column, and the crotonaldehyde-removing column is operated under such conditions as to meet at least one of conditions (i) to (iii) as follows: (i) a reflux ratio at the distillation column is 0.01 or more; (ii) at the distillation column, the ratio of a crotonaldehyde concentration in a distillate to a crotonaldehyde concentration in a charge liquid is less than 1; and (iii) at the distillation column, the ratio of a crotonaldehyde concentration in bottoms to a crotonaldehyde concentration in the charge liquid is greater than 1.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: August 25, 2020
    Assignee: DAICEL CORPORATION
    Inventor: Masahiko Shimizu
  • Patent number: 10737996
    Abstract: Provided is a method that can industrially efficiently produce acetic acid yielding a good potassium permanganate test result, without costing much. The method includes an acetaldehyde-removing step by which by-produced acetaldehyde is industrially advantageously removed. The method also includes the step of subjecting at least one of an aqueous phase and an organic phase of a light ends column overhead condensate to distillation in a crotonaldehyde-removing column. The light ends column is operated at a reflux ratio of 2 or more (when the aqueous phase is refluxed). The crotonaldehyde-removing column is operated so as to meet at least one of conditions (a-i) to (a-iii) as follows: (a-i) a reflux ratio at the distillation column is 0.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: August 11, 2020
    Assignee: DAICEL CORPORATION
    Inventor: Masahiko Shimizu
  • Patent number: 10696616
    Abstract: It is intended to provide a method capable of lowering a formic acid concentration in acetic acid product by a simple approach. The method for producing acetic acid according to the present invention comprises at least one step selected from a step that satisfies the following operating condition (i) and a step that satisfies the following operating condition (ii) in an acetic acid production process, and controlling an oxygen concentration in an embodiment satisfying at least one selected from the following (iii) and (iv) for one or more processes: (i) operating conditions involving a hydrogen partial pressure of less than 500 kPa (absolute pressure), a carbon dioxide partial pressure of less than 70 kPa (absolute pressure), and an operating temperature of more than 150° C.; (ii) operating conditions involving a hydrogen partial pressure of 5 kPa or less (absolute pressure), a carbon dioxide partial pressure of less than 20 kPa (absolute pressure), and an operating temperature of more than 100° C.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: June 30, 2020
    Assignee: DAICEL CORPORATION
    Inventor: Masahiko Shimizu
  • Publication number: 20200203409
    Abstract: The present disclosure relates to an imaging device that enables formation of a film over the entirety of a film formation region, a method of producing the imaging device, an imaging apparatus, and an electronic apparatus. The imaging device includes a sensor and a glass sheet bonded to a front surface of the sensor. The glass sheet is provided with a recess in a peripheral portion thereof that is outside a film formation region thereof over which an inorganic film is to be formed. The recess corresponds to a claw provided on a periphery of an opening of a tray for a vapor deposition process for the inorganic film. This allows the entirety of the film formation region of the glass sheet to be exposed from the opening when the imaging device is set in the opening, and thus enables formation of the inorganic film over the entirety of the film formation region. The present disclosure is applicable to an imaging apparatus.
    Type: Application
    Filed: August 29, 2018
    Publication date: June 25, 2020
    Inventors: SHOGO ONO, MASAHIKO SHIMIZU
  • Publication number: 20200198188
    Abstract: A flexible mandrel for molding a composite material containing a thermosetting resin includes: a body including a contact surface configured to come into contact with the composite material during molding and a non-contact surface configured not to come into contact with the composite material during molding; and at least one hole formed from the non-contact surface toward an inside of the body.
    Type: Application
    Filed: June 7, 2018
    Publication date: June 25, 2020
    Inventors: Takayuki SHIMIZU, Akihisa OKUDA, Ryota OZAKI, Shoya MANO, Masahiko SHIMIZU
  • Publication number: 20200180244
    Abstract: This flexible mandrel for molding a composite material containing a thermosetting resin includes: a main body containing a first material; and a thermally conductive layer containing a second material having a higher thermal conductivity than the first material, the thermally conductive layer being formed so as to cover at least a portion of the main body. The thermally conductive layer extends from a contacting surface of the flexible mandrel, which comes into contact with the composite material during molding, to a non-contacting surface which does not come into contact with the composite material.
    Type: Application
    Filed: July 13, 2018
    Publication date: June 11, 2020
    Inventors: Takayuki SHIMIZU, Akihisa OKUDA, Ryota OZAKI, Shoya MANO, Masahiko SHIMIZU
  • Publication number: 20200172461
    Abstract: Provided are a method and an acetic acid production method, each of which can effectively restrain or prevent local corrosion of an inner wall of a process unit and/or line and can lower a formic acid concentration in an acetic acid product. The method produces acetic acid by a process including (1) a reaction step and (A) a separation step. In the reaction step (1), methanol is carbonylated with carbon monoxide in the presence of a catalytic system, acetic acid, methyl acetate, and water, where the catalytic system includes a metal catalyst and methyl iodide. In the separation step (A), the reaction mixture resulting from the reaction step is separated, using at least one selected from evaporators and distillation columns, into a stream containing the catalyst, an acetic acid stream rich in acetic acid, and a stream rich in lower-boiling components as compared with the acetic acid stream.
    Type: Application
    Filed: March 27, 2018
    Publication date: June 4, 2020
    Applicant: DAICEL CORPORATION
    Inventor: Masahiko SHIMIZU
  • Patent number: 10661196
    Abstract: A process for separating or removing permanganate reducing compounds (PRC's) from a first mixture containing at least one PRC, methyl iodide, and water comprises the steps of: feeding the first mixture to a feed port of a distillation column, and distilling and separating the first mixture into an upper stream and a lower stream, wherein the distillation of the first mixture forms a second mixture at an upper position than the feed port, and the process further comprises the steps of: withdrawing the second mixture as the upper stream, and withdrawing the lower stream from a lower position than the feed port.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 26, 2020
    Assignee: DAICEL CORPORATION
    Inventors: Masahiko Shimizu, Yoshihisa Mizutani, Hiroyuki Miura
  • Publication number: 20200140366
    Abstract: Provided is an acetic acid production method that enables, in a scrubbing system, efficient separation and obtaining of methyl iodide and an absorbing solvent; restrainment of corrosion of the interior of a distillation column; efficient separation between and recovery of hydrogen iodide and methyl iodide; or sufficient recovery of hydrogen iodide. The acetic acid production method according to the present invention includes a first absorption step and a second absorption step. In the first absorption step, an offgas is brought into contact with a first absorbent to allow the first absorbent to absorb an iodine compound from the offgas, to give a first gas, where the first absorbent includes at least one of C2 or higher alcohols, esters of C3 or higher carboxylic acids, esters between carboxylic acids and C2 or higher alcohols, ethers, ketones, water, and basic aqueous solutions.
    Type: Application
    Filed: July 2, 2018
    Publication date: May 7, 2020
    Applicant: DAICEL CORPORATION
    Inventor: Masahiko SHIMIZU
  • Patent number: 10633322
    Abstract: A process for producing acetic acid comprises a process comprising: (1) carbonylating methanol; (2) separating the reaction mixture into a volatile phase and a less-volatile phase; (3) distilling the volatile phase to forma first overhead rich in a lower boiling component, and an acetic acid stream rich in acetic acid; and at least one step group selected from the group consisting of the following sections (4), (9), and (15): (4) a section for separating impurities from the acetic acid stream to give purified acetic acid, (9) a section for separating the first overhead into a stream rich in acetaldehyde and a stream rich in methyl iodide, and (15) a section for absorption-treating an off-gas from the process with an absorption solvent and forming a carbon monoxide-rich stream and an acetic acid-rich stream.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: April 28, 2020
    Assignee: DAICEL CORPORATION
    Inventors: Masahiko Shimizu, Yoshihisa Mizutani, Hiroyuki Miura
  • Publication number: 20200123090
    Abstract: Provided is a method that can industrially efficiently produce acetic acid yielding a good potassium permanganate test result, without costing much. The method includes an acetaldehyde-removing step by which by-produced acetaldehyde is industrially advantageously removed. The method also includes the step of subjecting at least one of an aqueous phase and an organic phase of a light ends column overhead condensate to distillation in a crotonaldehyde-removing column. The light ends column is operated at a reflux ratio of 2 or more (when the aqueous phase is refluxed). The crotonaldehyde-removing column is operated so as to meet at least one of conditions (a-i) to (a-iii) as follows: (a-i) a reflux ratio at the distillation column is 0.
    Type: Application
    Filed: May 29, 2018
    Publication date: April 23, 2020
    Applicant: DAICEL CORPORATION
    Inventor: Masahiko SHIMIZU
  • Publication number: 20200123093
    Abstract: Provided is a method for industrially efficiently producing acetic acid that yields a good potassium permanganate test result, without enormous cost. A light ends column (first distillation column) is operated with a reflux ratio at a specific level or more, a distillation column (crotonaldehyde-removing column) is provided for treating an organic phase of an overhead condensate from the light ends column, and the crotonaldehyde-removing column is operated under such conditions as to meet at least one of conditions (i) to (iii) as follows: (i) a reflux ratio at the distillation column is 0.01 or more; (ii) at the distillation column, the ratio of a crotonaldehyde concentration in a distillate to a crotonaldehyde concentration in a charge liquid is less than 1; and (iii) at the distillation column, the ratio of a crotonaldehyde concentration in bottoms to a crotonaldehyde concentration in the charge liquid is greater than 1.
    Type: Application
    Filed: May 29, 2018
    Publication date: April 23, 2020
    Applicant: DAICEL CORPORATION
    Inventor: Masahiko SHIMIZU
  • Publication number: 20200115310
    Abstract: It is intended to provide a method capable of lowering a formic acid concentration in acetic acid product by a simple approach. The method for producing acetic acid according to the present invention comprises at least one step selected from a step that satisfies the following operating condition (i) and a step that satisfies the following operating condition (ii) in an acetic acid production process, and controlling an oxygen concentration in an embodiment satisfying at least one selected from the following (iii) and (iv) for one or more processes: (i) operating conditions involving a hydrogen partial pressure of less than 500 kPa (absolute pressure), a carbon dioxide partial pressure of less than 70 kPa (absolute pressure), and an operating temperature of more than 150° C.; (ii) operating conditions involving a hydrogen partial pressure of 5 kPa or less (absolute pressure), a carbon dioxide partial pressure of less than 20 kPa (absolute pressure), and an operating temperature of more than 100° C.
    Type: Application
    Filed: May 15, 2018
    Publication date: April 16, 2020
    Applicant: DAICEL CORPORATION
    Inventor: Masahiko SHIMIZU
  • Publication number: 20200079719
    Abstract: Provided is a method for industrially efficiently producing acetic acid yielding a good potassium permanganate test result, without costing much. The acetic acid production method according to the present invention includes a carbonylation step, a separation step, a recycling step, a liquid-liquid separation step, and an acetaldehyde-removing step of treating an object, where the object is selected from at least a part of at least one of the aqueous phase and the organic phase on the basis of a factor(s) selected from a liquid temperature in the liquid-liquid separation in the liquid-liquid separation step, an acetaldehyde concentration in at least one of the aqueous phase and the organic phase, an acetaldehyde partition coefficient, a methyl acetate concentration in at least one of the aqueous phase and the organic phase, and a methyl acetate partition coefficient. In the first acetic acid stream in the separation step, a crotonaldehyde concentration is controlled to 2.
    Type: Application
    Filed: May 29, 2018
    Publication date: March 12, 2020
    Applicant: DAICEL CORPORATION
    Inventor: Masahiko SHIMIZU
  • Patent number: 10562836
    Abstract: A process for producing acetic acid while efficiently separating permanganate reducing compounds (PRC's) and methyl iodide is provided. PRC's are separated or removed from a mixed composition (3A) containing PRC's and methyl iodide by distilling the mixed composition in a distillation step (5) to form an overhead stream (5A), a side-cut stream (5B), and a lower stream (5C). In a distillation column of the distillation step (5), an extractant (e.g., water) extracting PRC's preferentially to methyl iodide is added to a concentration zone in which PRC's and methyl iodide are concentrated, and an extraction mixture falling from the concentration zone is withdrawn as the side-cut stream (5B).
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 18, 2020
    Assignee: DAICEL CORPORATION
    Inventors: Masahiko Shimizu, Hiroyuki Miura, Yoshihisa Mizutani