Patents by Inventor Masahito Tasaka

Masahito Tasaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10625321
    Abstract: According to the present invention, there is provided a cooling apparatus for a steel material in which one portion in a longitudinal direction of an elongated steel material (10) is heated while the steel material is fed in the longitudinal direction in a state where one end portion of the steel material is gripped, and the one end portion is moved in a two-dimensional or three-dimensional direction so as to form the steel material into a predetermined shape including a bent portion and thereafter to cool a heated portion including the bent portion. The cooling apparatus includes a first cooling apparatus (22) that ejects a first cooling medium to the heated portion, and a second cooling apparatus (23) that is disposed on a downstream side from the first cooling apparatus when viewed along a feeding direction of the steel material, and that ejects a second cooling medium to the heated portion.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: April 21, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yoshihiro Serizawa, Akihiro Sakamoto, Masahito Tasaka, Naoaki Shimada, Ryuji Hamada, Hideki Matsuda, Norimasa Yamasaki
  • Patent number: 10538275
    Abstract: The present invention has as its object the provision of a T-shaped joint structure sufficiently securing a mounting region for another member and securing rigidity of a joint part. A first member and a second member joined with the first member and extending in a direction vertical to the longitudinal direction of the first member are provided. In a side view of first member in the longitudinal direction, the part of the first member joined with the second member, that is, a first member side joining element, is slanted from the first member toward the second member so that the first member becomes tapered. The part of the second member joined with the first member, that is, a second member side joining element, is slanted from the first member toward the second member in the same direction as the first member side joining element. The first member side joining element and second member side joining element are smoothly joined to form a joined part.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: January 21, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takeshi Kawachi, Yoshiaki Nakazawa, Masahito Tasaka
  • Patent number: 10378090
    Abstract: A steel material comprising, by mass%, C: greater than 0.05% to 0.2%, Mn: 1% to 3%, Si: greater than 0.5% to 1.8%, Al: 0.01% to 0.5%, N: 0.001% to 0.015%, Ti or a sum of V and Ti: greater than 0.1% to 0.25%, Ti: 0.001% or more, Cr: 0% to 0.25%, Mo: 0% to 0.35%, the balance: Fe and impurities, comprising a multi-phase structure having a ferrite main phase and a second phase containing one or more of bainite, martensite and austenite, wherein an average nanohardness of the second phase is less than 6.0 GPa, an average grain diameter of all crystal grains in the main phase and the second phase is 3 ?m or less, and a proportion of a length of small-angle grain boundaries where the misorientation is 2° to less than 15° in a length of all grain boundaries is 15% or more.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: August 13, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
  • Patent number: 10035324
    Abstract: A formed member is provided which can be manufactured at a low cost, which has excellent dimensional accuracy, which has excellent axial crushing properties and three-point bending properties, which has excellent bending stiffness and torsional stiffness, and which is suitable for use in a component of an automobile. The formed member (20) has a reinforcing member (35) which is joined by a weld (40) provided on a ridge portion (28). It is manufactured by joining a flat sheet blank and a flat sheet reinforcing member (35) by a weld (40) and performing bending so that the weld (40) becomes a ridge portion (28).
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 31, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masanori Yasuyama, Yoshiaki Nakazawa, Masahito Tasaka, Toshiya Suzuki, Masahiro Nakata, Hiroki Fujimoto, Hitomi Nishibata
  • Patent number: 9994942
    Abstract: A steel material contains: by mass %, C: greater than 0.05% to 0.18%; Mn: 1% to 3%; Si: greater than 0.5% to 1.8%; Al: 0.01% to 0.5%; N: 0.001% to 0.015%; one or both of V and Ti: 0.01% to 0.3% in total; Cr: 0% to 0.25%; Mo: 0% to 0.35%; a balance: Fe and impurities; and 80% or more of bainite by area %, and 5% or more in total of one or two or more selected from a group consisting of ferrite, martensite and austenite by area %, in which an average block size of the above-described bainite is less than 2.0 ?m, an average grain diameter of all of the above-described ferrite, martensite and austenite is less than 1.0 ?m, an average nanohardness of the above-described bainite is 4.0 GPa to 5.0 GPa, and MX-type carbides each having a circle-equivalent diameter of 10 nm or more exist with an average grain spacing of 300 nm or less therebetween.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: June 12, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kaori Kawano, Yasuaki Tanaka, Masahito Tasaka, Yoshiaki Nakazawa, Toshiro Tomida
  • Patent number: 9862428
    Abstract: The steel material for an impact absorbing member has a composition containing: by mass %, C: 0.05 to 0.18%, Mn: 1 to 3%, Si+Al: at least 0.5% and less than 2.5%, and N: 0.001 to 0.015%, and in some cases, Cr: at most 0.5%, Mo: at most 0.2%, Ti: at most 0.05%, Nb: at most 0.05%, V: at most 0.2%, and B: at most 0.002%, the remainder being Fe and impurities. The steel material structure contains at least 70% by area of bainite made up of a lath structure having an average interval of at most 1 mm and martensite, 5 to 30%, and satisfies Formulas (1) and (2): (1) 1.2 £ HM0/HB0 £ 1.6, (2) 0.90 £ {(HM10/HM0)/(HB10/HB0) £ 1.3, where HM0 and HM10 represent average nano hardness in an initial state and after 10% tensile deformation of the martensite, and HB0 and HB0 represent that of bainite, respectively.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 9, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
  • Publication number: 20170349219
    Abstract: The present invention has as its object the provision of a T-shaped joint structure sufficiently securing a mounting region for another member and securing rigidity of a joint part. A first member and a second member joined with the first member and extending in a direction vertical to the longitudinal direction of the first member are provided. In a side view of first member in the longitudinal direction, the part of the first member joined with the second member, that is, a first member side joining element, is slanted from the first member toward the second member so that the first member becomes tapered. The part of the second member joined with the first member, that is, a second member side joining element, is slanted from the first member toward the second member in the same direction as the first member side joining element. The first member side joining element and second member side joining element are smoothly joined to form a joined part.
    Type: Application
    Filed: November 10, 2015
    Publication date: December 7, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takeshi KAWACHI, Yoshiaki NAKAZAWA, Masahito TASAKA
  • Patent number: 9809874
    Abstract: A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5% , B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300%2 and 5% effective flow stress is at least 900 MPa.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: November 7, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuaki Tanaka, Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Takuya Nishio, Masayuki Wakita, Jun Haga, Toshiro Tomida
  • Publication number: 20170304883
    Abstract: According to the present invention, there is provided a cooling apparatus for a steel material in which one portion in a longitudinal direction of an elongated steel material (10) is heated while the steel material is fed in the longitudinal direction in a state where one end portion of the steel material is gripped, and the one end portion is moved in a two-dimensional or three-dimensional direction so as to form the steel material into a predetermined shape including a bent portion and thereafter to cool a heated portion including the bent portion. The cooling apparatus includes a first cooling apparatus (22) that ejects a first cooling medium to the heated portion, and a second cooling apparatus (23) that is disposed on a downstream side from the first cooling apparatus when viewed along a feeding direction of the steel material, and that ejects a second cooling medium to the heated portion.
    Type: Application
    Filed: October 5, 2015
    Publication date: October 26, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro SERIZAWA, Akihiro SAKAMOTO, Masahito TASAKA, Naoaki SHIMADA, Ryuji HAMADA, Hideki MATSUDA, Norimasa YAMASAKI
  • Patent number: 9463758
    Abstract: Provided is a crash box having improved robustness, wherein an angle of the pair of corner portions is set to 90° or larger and 150° or smaller, an angle of the another pair of corner portions is set to 30° or larger and 90° or smaller, one or more inwardly convex trench portions extending in a longitudinal direction are provided, a cross-sectional peripheral length of the tubular body in the one end side is shorter than a cross-sectional peripheral length of the tubular body in the other end side, an aspect ratio between the longest one and the shortest one of diagonal lines of a polygon changes depending on a position on the axial direction of the tubular body, and overall sides on the cross section in the one end are formed in parallel to the opposite sides on the cross section in the other end.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: October 11, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kenji Tamura, Yoshiaki Nakazawa, Masahito Tasaka
  • Patent number: 9255319
    Abstract: There is provided a Cr-containing austenitic alloy tube, wherein a chromium oxide film with a thickness of 0.05 to 1.5 ?m having the relationship defined by Formula (i) is formed on the inner surface of the tube, wherein the average concentration of C in the depth range of 5 to 10 ?m from the inner surface is lower than the concentration of C in a base metal; 0.4??1/?2?2.5??(i) wherein ?1 and ?2 are thicknesses (?m) of the chromium oxide film at both ends of tube, respectively.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: February 9, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuhiro Masaki, Masahito Tasaka, Manabu Kanzaki, Akihiro Uehira, Shoji Kinomura
  • Publication number: 20150344996
    Abstract: The steel material for an impact absorbing member has a composition containing: by mass %, C: 0.05 to 0.18%, Mn: 1 to 3%, Si+Al: at least 0.5% and less than 2.5%, and N: 0.001 to 0.015%, and in some cases, Cr: at most 0.5%, Mo: at most 0.2%, Ti: at most 0.05%, Nb: at most 0.05%, V: at most 0.2%, and B: at most 0.002%, the remainder being Fe and impurities. The steel material structure contains at least 70% by area of bainite made up of a lath structure having an average interval of at most 1 mm and martensite, 5 to 30%, and satisfies Formulas (1) and (2): (1) 1.2 £ HM0/HB0 £ 1.6, (2) 0.90 £ {(HM10/HM0)/(HB10/HB0) £ 1.3, where HM0 and HM10 represent average nano hardness in an initial state and after 10% tensile deformation of the martensite, and HB0 and HB0 represent that of bainite, respectively.
    Type: Application
    Filed: December 6, 2012
    Publication date: December 3, 2015
    Inventors: Kaori KAWANO, Masahito TASAKA, Yoshiaki NAKAZAWA, Yasuaki TANAKA, Toshiro TOMIDA
  • Publication number: 20150197206
    Abstract: Provided is a crash box having improved robustness, wherein an angle of the pair of corner portions is set to 90° or larger and 150° or smaller, an angle of the another pair of corner portions is set to 30° or larger and 90° or smaller, one or more inwardly convex trench portions extending in a longitudinal direction are provided, a cross-sectional peripheral length of the tubular body in the one end side is shorter than a cross-sectional peripheral length of the tubular body in the other end side, an aspect ratio between the longest one and the shortest one of diagonal lines of a polygon changes depending on a position on the axial direction of the tubular body, and overall sides on the cross section in the one end are formed in parallel to the opposite sides on the cross section in the other end.
    Type: Application
    Filed: August 15, 2013
    Publication date: July 16, 2015
    Inventors: Kenji Tamura, Yoshiaki Nakazawa, Masahito Tasaka
  • Publication number: 20150098857
    Abstract: A steel material contains: by mass %, C: greater than 0.05% to 0.18%; Mn: 1% to 3%; Si: greater than 0.5% to 1.8%; Al: 0.01% to 0.5%; N: 0.001% to 0.015%; one or both of V and Ti: 0.01% to 0.3% in total; Cr: 0% to 0.25%; Mo: 0% to 0.35%; a balance: Fe and impurities; and 80% or more of bainite by area %, and 5% or more in total of one or two or more selected from a group consisting of ferrite, martensite and austenite by area %, in which an average block size of the above-described bainite is less than 2.0 ?m, an average grain diameter of all of the above-described ferrite, martensite and austenite is less than 1.0 ?m, an average nanohardness of the above-described bainite is 4.0 GPa to 5.0 GPa, and MX-type carbides each having a circle-equivalent diameter of 10 nm or more exist with an average grain spacing of 300 nm or less therebetween.
    Type: Application
    Filed: August 21, 2013
    Publication date: April 9, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kaori Kawano, Yasuaki Tanaka, Masahito Tasaka, Yoshiaki Nakazawa, Toshiro Tomida
  • Publication number: 20150075680
    Abstract: A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5%, B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300%2 and 5% effective flow stress is at least 900 MPa.
    Type: Application
    Filed: April 8, 2013
    Publication date: March 19, 2015
    Inventors: Yasuaki Tanaka, Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Takuya Nishio, Masayuki Wakita, Jun Haga, Toshiro Tomida
  • Publication number: 20150071812
    Abstract: A steel material having a chemical composition of, by mass %, C: greater than 0.05% to 0.2%, Mn: 1% to 3%, Si: greater than 0.5% to 1.8%, Al: 0.01% to 0.5%, N: 0.001% to 0.015%, Ti or a sum of V and Ti: greater than 0.1% to 0.25%, Ti: 0.001% or more, Cr: 0% to 0.25%, Mo: 0% to 0.35%, and a balance: Fe and impurities, includes a steel structure being a multi-phase structure having a main phase made of ferrite of 50 area % or more, and a second phase containing one or two or more selected from a group consisting of bainite, martensite and austenite, in which an average nanohardness of the above-described second phase is less than 6.
    Type: Application
    Filed: July 22, 2013
    Publication date: March 12, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
  • Publication number: 20140147693
    Abstract: A formed member is provided which can be manufactured at a low cost, which has excellent dimensional accuracy, which has excellent axial crushing properties and three-point bending properties, which has excellent bending stiffness and torsional stiffness, and which is suitable for use in a component of an automobile. The formed member (20) has a reinforcing member (35) which is joined by a weld (40) provided on a ridge portion (28). It is manufactured by joining a flat sheet blank and a flat sheet reinforcing member (35) by a weld (40) and performing bending so that the weld (40) becomes a ridge portion (28).
    Type: Application
    Filed: September 16, 2011
    Publication date: May 29, 2014
    Inventors: Masanori Yasuyama, Yoshiaki Nakazawa, Masahito Tasaka, Toshiya Suzuki, Masahiro Nakata, Hiroki Fujimoto, Hitomi Nishibata
  • Publication number: 20130206272
    Abstract: There is provided a Cr-containing austenitic alloy tube, wherein a chromium oxide film with a thickness of 0.05 to 1.5 ?m having the relationship defined by Formula (i) is formed on the inner surface of the tube, wherein the average concentration of C in the depth range of 5 to 10 ?m from the inner surface is lower than the concentration of C in a base metal; 0.4??1/?2?2.5??(i) wherein ?1 and ?2 are thicknesses (?m) of the chromium oxide film at both ends of tube, respectively.
    Type: Application
    Filed: August 12, 2011
    Publication date: August 15, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuhiro Masaki, Masahito Tasaka, Manabu Kanzaki, Akihiro Uehira, Shoji Kinomura
  • Publication number: 20090123769
    Abstract: A titanium oxide photocatalyst responsive to visible light which can exhibit a high photocatalytic activity in response to visible light is produced by subjecting titanium oxide and/or titanium hydroxide obtained by neutralizing an acidic titanium compound with a nitrogen-containing base to heat treatment in an atmosphere containing a hydrolyzable metal compound (e.g., a titanium halide) and then to additional heat treatment in a gas having a moisture content of 0.5-4.0 volume % at a temperature of 350° C. or above. The photocatalyst which is a nitrogen-containing titanium oxide has no substantial peak at a temperature of 600° C. or above in a mass fragment spectrum obtained by thermal desorption spectroscopy in which the ratio m/e of the mass number m to the electric charged e of ions is 28, and the peak having the smallest half band width is in the range of 400-600° C. in the spectrum. The nitrogen content calculated from the peak appearing at 400 eV±1.
    Type: Application
    Filed: March 22, 2007
    Publication date: May 14, 2009
    Applicant: SUMITOMO TITANIUM CORPORATION
    Inventors: Yasuhiro Masaki, Katsuhiro Nishihara, Tadashi Fukuda, Katsumi Okada, Masahito Tasaka, Shinji Shimosaki, Hideaki Kanno, Sadanobu Nagaoka, Kazuomi Azuma, Tadashi Ogasawara
  • Publication number: 20050146213
    Abstract: An eddy current braking apparatus according to the invention comprises: a brake disk (2) connected to a rotary shaft (1); a plurality of permanent magnets (7) arranged so that magnetic pole surfaces are opposed to the brake disk (2); and a drive mechanism for moving the permanent magnets (7) toward and away from the brake disk (2). Preferably, it further comprises a guide sleeve (3) supported by a nonrotatable structural section not connected to the rotary shaft (1), which receives a support ring (4) supporting the permanent magnets (7) and is arranged facing to the brake disk (2). Moreover, in the guide sleeve (3), there are provided ferromagnetic members (8) positioned opposite to the brake disk (2). Alternatively, the whole of said guide sleeve (3) including an end face opposed to said permanent magnets (7) is constructed of nonmagnetic material.
    Type: Application
    Filed: January 31, 2003
    Publication date: July 7, 2005
    Inventors: Kenji Imanishi, Yasutaka Noguchi, Shinichiro Hiramatsu, Yasunori Tani, Hiroyuki Yamaguchi, Masahito Tasaka, Akira Saito, Mitsuo Miyahara