Patents by Inventor Masakiyo Tsunoda

Masakiyo Tsunoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8279548
    Abstract: A microwave oscillation element of the present invention includes a lamination main part in which an oscillating layer that is a magnetization free layer and that generates a high frequency electromagnetic field by an excitation of a spin wave, a nonmagnetic intermediate layer, a polarizer layer, and a reference layer that is to be a base magnetic layer of a spin transfer due to application of current are layered in this order. The oscillating layer is made of CoIr, the polarizer layer is configured of CoCr or CoRu; and the nonmagnetic intermediate layer is configured of Cr or Ru. As a result, the efficiency of the spin injection is improved and the microwave oscillation element where the oscillation efficiency is excellent can be realized.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: October 2, 2012
    Assignee: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Kiyoshi Noguchi, Migaku Takahashi, Masakiyo Tsunoda
  • Patent number: 8191235
    Abstract: The method of the present invention provides a magnetoresistance effect element, which is capable of having a high MR ratio, corresponding to high density recording and being suitably applied to a magnetoresistance device even though a barrier layer is thinned to reduce resistance of the magnetoresistance effect element. The method of producing the magnetoresistance effect element, which includes the barrier layer composed of an oxidized metal, a first magnetic layer contacting one of surfaces of the barrier layer and a second magnetic layer contacting the other surface thereof, comprises the steps of: laminating the barrier layer on the first magnetic layer with using a target composed of the oxidized metal; and laminating the second magnetic layer on the barrier layer. The barrier layer is annealed before laminating the second magnetic layer thereon.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: June 5, 2012
    Assignees: Fujitsu Limited, Tohoku University
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Koujiro Komagaki, Yuji Uehara, Kazuyuki Sunaga
  • Patent number: 8154828
    Abstract: An MR element in a CPP structure includes a spacer layer made of Cu, a magnetic pinned layer containing CoFe and a free layer containing CoFe that are laminated to sandwich the spacer layer. The free layer is located below the magnetic pinned layer. The free layer is oriented in a (001) crystal plane, the spacer layer is formed and oriented in a (001) crystal plane on the (001) crystal plane of the free layer. Therefore, in a low resistance area where an area resistivity (AR) of the MR element is, for example, lower than 0.3 ?·?m2, an MR element that has a large variation of a resistance is obtained.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: April 10, 2012
    Assignee: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Shinji Hara, Kiyoshi Noguchi, Migaku Takahashi, Masakiyo Tsunoda
  • Patent number: 8081394
    Abstract: An information recording apparatus has a plurality of fine particles forming an array on a plane in close proximity of each other, each of the plural particles including a ferromagnetic metal, a light-emitting device for exciting a near-field light, and a photo-electric conversion element for detecting a near-field light traveled along the fine particles. Summary information may be recorded for plural information recording parts.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: December 20, 2011
    Assignees: Ricoh Company, Ltd., Tohoku University
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Shin Saito, Tomoyuki Ogawa, Itaru Fujimura, Shigeyoshi Misawa, Toshiyuki Kawasaki
  • Publication number: 20110255197
    Abstract: A microwave oscillation element of the present invention includes a lamination main part in which an oscillating layer that is a magnetization free layer and that generates a high frequency electromagnetic field by an excitation of a spin wave, a nonmagnetic intermediate layer, a polarizer layer, and a reference layer that is to be a base magnetic layer of a spin transfer due to application of current are layered in this order. The oscillating layer is made of CoIr, the polarizer layer is configured of CoCr or CoRu; and the nonmagnetic intermediate layer is configured of Cr or Ru. As a result, the efficiency of the spin injection is improved and the microwave oscillation element where the oscillation efficiency is excellent can be realized.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Applicant: TDK CORPORATION
    Inventors: Yoshihiro TSUCHIYA, Kiyoshi Noguchi, Migaku Takahashi, Masakiyo Tsunoda
  • Patent number: 7891932
    Abstract: A working rod with a tip end extending into a vacuum process chamber and moving in the axial direction, two static-pressure gas bearings supporting the rod in the non-contact manner, and an internal moving body of a magnet coupling type driving mechanism driving the rod are housed in a rod housing cylindrical portion leading to the vacuum process chamber, and an exhaust portion by suction is provided at a part of the rod housing cylindrical portion so that the pressure of the rod housing cylindrical portion is lowered than the pressure of the vacuum process chamber by the exhaust from the exhaust portion.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: February 22, 2011
    Assignees: SMC Corporation, Tohoku University
    Inventors: Soichi Sato, Takashi Abe, Eiko Miyasato, Migaku Takahashi, Masakiyo Tsunoda
  • Publication number: 20110007582
    Abstract: An information recording apparatus comprises a plurality of fine particles forming an array on a plane in close proximity of each other, each of the plural particles including a ferromagnetic metal, a light-emitting device for exciting a near-field light, and a photo-electric conversion element for detecting a near-field light traveled along the fine particles.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 13, 2011
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Shin Saito, Tomoyuki Ogawa, Itaru Fujimura, Shigeyoshi Misawa, Toshiyuki Kawasaki
  • Publication number: 20110007420
    Abstract: An MR element in a CPP structure includes a spacer layer made of Cu, a magnetic pinned layer containing CoFe and a free layer containing CoFe that are laminated to sandwich the spacer layer. The free layer is located below the magnetic pinned layer. The free layer is oriented in a (001) crystal plane, the spacer layer is formed and oriented in a (001) crystal plane on the (001) crystal plane of the free layer. Therefore, in a low resistance area where an area resistivity (AR) of the MR element is, for example, lower than 0.3 ?·?m2, an MR element that has a large variation of a resistance is obtained.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 13, 2011
    Applicant: TDK CORPORATION
    Inventors: Yoshihiro Tsuchiya, Shinji Hara, Kiyoshi Noguchi, Migaku Takahashi, Masakiyo Tsunoda
  • Patent number: 7826174
    Abstract: An information recording apparatus comprises a plurality of fine particles forming an array on a plane in close proximity of each other, each of the plural particles including a ferromagnetic metal, a light-emitting device for exciting a near-field light, and a photo-electric conversion element for detecting a near-field light traveled along the fine particles.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 2, 2010
    Assignees: Ricoh Company, Ltd., Tohoku University
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Shin Saito, Tomoyuki Ogawa, Itaru Fujimura, Shigeyoshi Misawa, Toshiyuki Kawasaki
  • Patent number: 7802920
    Abstract: A first and a second static-pressure gas bearings supporting a rod at two locations in the axial direction in the non-contact manner are provided, in which the first static-pressure gas bearing is fixedly supported by a bearing housing, while the second static-pressure gas bearing is supported capable of displacement through a movable support mechanism. And this movable support mechanism has an actuator and suppresses contact of the rod with the static-pressure gas bearings by displacing the shaft center of the second static-pressure gas bearing with respect to the first static-pressure gas bearing by this actuator according to a load acting on the rod.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: September 28, 2010
    Assignees: SMC Corporation, Tohoku University
    Inventors: Soichi Sato, Takashi Abe, Eiko Miyasato, Migaku Takahashi, Masakiyo Tsunoda
  • Publication number: 20090168270
    Abstract: In comparison with conventional exchange-coupled elements, the exchange-coupled element of the present invention has greater unidirectional magnetization anisotropy. The exchange-coupled element comprises: an ordered antiferromagnetic layer; and a pinned magnetic layer being exchange-coupled with the ordered antiferromagnetic layer, the pinned magnetic layer having unidirectional magnetization anisotropy. The pinned magnetic layer is constituted by a first pinned magnetic layer having a composition, which can have a face-centered cubic lattice structure, and a second pinned magnetic layer having a composition, which can have a body-centered cubic lattice structure.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Applicants: FUJITSU LIMITED, TOHOKU UNIVERSITY
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Koujiro Komagaki, Yuji Uehara
  • Publication number: 20090169915
    Abstract: The method of the present invention provides a magnetoresistance effect element, which is capable of having a high MR ratio, corresponding to high density recording and being suitably applied to a magnetoresistance device even though a barrier layer is thinned to reduce resistance of the magnetoresistance effect element. The method of producing the magnetoresistance effect element, which includes the barrier layer composed of an oxidized metal, a first magnetic layer contacting one of surfaces of the barrier layer and a second magnetic layer contacting the other surface thereof, comprises the steps of: laminating the barrier layer on the first magnetic layer with using a target composed of the oxidized metal; and laminating the second magnetic layer on the barrier layer. The barrier layer is annealed before laminating the second magnetic layer thereon.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 2, 2009
    Applicants: FUJITSU LIMITED, TOHOKU UNIVERSITY
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Koujiro Komagaki, Yuji Uehara, Kazuyuki Sunaga
  • Publication number: 20080180860
    Abstract: In the magnetic thin film, a magnetization direction of a ferromagnetic layer, e.g., a pinned layer, can be securely fixed. The magnetic thin film comprises: an antiferromagnetic layer; and the ferromagnetic layer. The antiferromagnetic layer is composed of a manganic antiferromagnetic material, and a manganese (Mn) layer is formed between the antiferromagnetic layer and the ferromagnetic layer.
    Type: Application
    Filed: November 29, 2007
    Publication date: July 31, 2008
    Applicant: Fujitsu Limited
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Kojiro Komagaki
  • Publication number: 20080180857
    Abstract: The tunnel magnetoresistance effect film is a highly practical tunnel magnetoresistance effect film having a characteristic of serviceable negative MR ratio, which can be used at room temperature. The tunnel magnetoresistance effect film comprises: a tunnel barrier layer; and magnetic layers sandwiching the tunnel barrier layer. One of the magnetic layers is composed of FeN.
    Type: Application
    Filed: November 29, 2007
    Publication date: July 31, 2008
    Applicant: Fujitsu Limited
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Kojiro Komagaki
  • Publication number: 20070230233
    Abstract: An information recording apparatus comprises a plurality of fine particles forming an array on a plane in close proximity of each other, each of the plural particles including a ferromagnetic metal, a light-emitting device for exciting a near-field light, and a photo-electric conversion element for detecting a near-field light traveled along the fine particles.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 4, 2007
    Inventors: Migaku Takahashi, Masakiyo Tsunoda, Shin Saito, Tomoyuki Ogawa, Itaru Fujimura, Shigeyoshi Misawa, Toshiyuki Kawasaki
  • Publication number: 20070110347
    Abstract: A first and a second static-pressure gas bearings supporting a rod at two locations in the axial direction in the non-contact manner are provided, in which the first static-pressure gas bearing is fixedly supported by a bearing housing, while the second static-pressure gas bearing is supported capable of displacement through a movable support mechanism. And this movable support mechanism has an actuator and suppresses contact of the rod with the static-pressure gas bearings by displacing the shaft center of the second static-pressure gas bearing with respect to the first static-pressure gas bearing by this actuator according to a load acting on the rod.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 17, 2007
    Applicants: SMC CORPORATION, TOHOKU UNIVERSITY
    Inventors: Soichi Sato, Takashi Abe, Eiko Miyasato, Migaku Takahashi, Masakiyo Tsunoda
  • Publication number: 20070107739
    Abstract: A working rod with a tip end extending into a vacuum process chamber and moving in the axial direction, two static-pressure gas bearings supporting the rod in the non-contact manner, and an internal moving body of a magnet coupling type driving mechanism driving the rod are housed in a rod housing cylindrical portion leading to the vacuum process chamber, and an exhaust portion by suction is provided at a part of the rod housing cylindrical portion so that the pressure of the rod housing cylindrical portion is lowered than the pressure of the vacuum process chamber by the exhaust from the exhaust portion.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 17, 2007
    Applicants: SMC Corporation, Tohoku University
    Inventors: Soichi Sato, Takashi Abe, Eiko Miyasato, Migaku Takahashi, Masakiyo Tsunoda
  • Patent number: 6482329
    Abstract: A method of manufacturing a magnetoresistance element which can reproduce magnetic signals with higher sensitivity. The manufacturing method includes the steps of providing a vacuum below 10−9 Torr in a film forming chamber for forming a nonmagnetic layer and ferromagnetic layer; performing plasma-etching of the surface of a substrate body by using a mixture of a gas (a) containing at least oxygen or water introduced into the chamber and an Ar gas (b) introduced into the chamber in a vacuum, state controlled to higher than 10−9 Torr; and forming the nonmagnetic and ferromagnetic layers on the etched substrate body by sputtering a prescribed target by using the mixture of the gases (a) and (b).
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: November 19, 2002
    Inventors: Migaku Takahashi, Satoshi Miura, Masakiyo Tsunoda
  • Patent number: 5534843
    Abstract: An insulating glass layer covers the surface of a thermistor element except at the two end surfaces. The insulating glass layer is partially or fully composed of crystallized glass. A terminal electrode is integrally formed on both end surfaces. The terminal electrodes include a baked-on electrode layer formed from a conductive paste. Layers of nickel and tin or lead/tin are plated onto the baked-on electrode. The insulating glass layer enhances shape-maintainability of the insulating glass layer and the baked-on electrodes, provides a smoother glass surface, resulting in a more aesthetically pleasing thermistor, prevents resistance variance due to plating of the baked-on electrodes and provides a strong anti-breaking strength thermistor. The coefficient of thermal expansion of the glass layer is less than the coefficient of thermal expansion of the thermistor element. This difference in coefficients of thermal expansion tends to help the thermistor element resist stress breakage.
    Type: Grant
    Filed: January 28, 1994
    Date of Patent: July 9, 1996
    Assignee: Mitsubishi Materials Corporation
    Inventors: Masakiyo Tsunoda, Hiroaki Nakajima, Masami Koshimura
  • Patent number: 5339068
    Abstract: A chip-type ceramic element contains a terminal electrode at each end and an inorganic insulating layer on the surface of the ceramic element between the electrodes. The terminal electrodes include a baked electrode formed from a conductive paste reacted with the material of the inorganic insulating layer. Layers of nickel and tin are plated on the baked electrode for improved heat resistance and soldering adhesion, respectively. The insulating layer prevents unwanted portions of the terminal electrodes from coming into contact with the ceramic element, thereby preventing dispersion in the resistance values of the element.
    Type: Grant
    Filed: June 18, 1993
    Date of Patent: August 16, 1994
    Assignee: Mitsubishi Materials Corp.
    Inventors: Masakiyo Tsunoda, Hiroaki Nakajima, Masami Koshimura