Patents by Inventor Masamichi Saito

Masamichi Saito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200161538
    Abstract: An exchange coupling film in which a magnetic field (Hex) at which the magnetization direction of a pinned magnetic layer is reversed is high, in which stability under high-temperature conditions is high, and which is excellent in strong-magnetic field resistance. The exchange coupling film includes an antiferromagnetic layer and a pinned magnetic layer including a ferromagnetic layer, the antiferromagnetic layer and the pinned magnetic layer being stacked together. The antiferromagnetic layer has a structure including a PtCr layer, a PtMn layer, and an IrMn layer stacked in this order. The IrMn layer is in contact with the pinned magnetic layer. The thickness of the PtMn layer is 12 ? or more, and the thickness of the IrMn layer is 6 ?. The sum of the thickness of the PtMn layer and the thickness of the IrMn layer is 20 ? or more.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: Masamichi Saito, Hiroaki Endo, Fumihito Koike
  • Patent number: 10650849
    Abstract: An exchange-coupled film according to the present invention includes an antiferromagnetic layer, pinned magnetic layer, and free magnetic layer which are stacked. The antiferromagnetic layer is composed of a Pt—Cr sublayer and an X—Mn sublayer (where X is Pt or Ir). The X—Mn sublayer is in contact with the pinned magnetic layer. The Pt—Cr sublayer has a composition represented by the formula Pt?Cr100 at %-? (? is 44 at % to 58 at %) when the X—Mn sublayer is placed on the Pt—Cr sublayer or has a composition represented by the formula Pt?Cr100 at %-? (? is 44 at % to 57 at %) when the X—Mn sublayer is placed on the pinned magnetic layer.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: May 12, 2020
    Assignee: ALPS ALPINE CO., LTD.
    Inventors: Masamichi Saito, Fumihito Koike, Hiroaki Endo
  • Publication number: 20190189150
    Abstract: An exchange-coupled film according to the present invention includes an antiferromagnetic layer, pinned magnetic layer, and free magnetic layer which are stacked. The antiferromagnetic layer is composed of a Pt—Cr sublayer and an X-Mn sublayer (where X is Pt or Ir). The X-Mn sublayer is in contact with the pinned magnetic layer. The Pt—Cr sublayer has a composition represented by the formula Pt?Cr100at %-? (? is 44 at % to 58 at %) when the X—Mn sublayer is placed on the Pt—Cr sublayer or has a composition represented by the formula Pt?Cr100 at %-? (? is 44 at % to 57 at %) when the X—Mn sublayer is placed on the pinned magnetic layer.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 20, 2019
    Inventors: Masamichi SAITO, Fumihito KOIKE, Hiroaki ENDO
  • Publication number: 20190170835
    Abstract: An exchange-coupled film includes an antiferromagnetic layer, pinned magnetic layer, and free magnetic layer which are stacked. The antiferromagnetic layer is composed of a Pt—Cr sublayer and an X—Mn sublayer (where X is Pt or Ir). The X—Mn sublayer is in contact with the pinned magnetic layer.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Inventors: Hiroaki ENDO, Fumihito KOIKE, Masamichi SAITO
  • Patent number: 10184993
    Abstract: A magnetometric sensor comprises a magnetoresistance effect element having a sensitivity axis in a specific direction; including a fixed magnetic layer, a nonmagnetic material layer, and a free magnetic layer stacked in this order on a substrate; and including a first antiferromagnetic layer on the free magnetic layer on the opposite side to the side facing the nonmagnetic material layer to cause an exchange coupling bias between the first antiferromagnetic layer and the free magnetic layer and align the magnetization direction of the free magnetic layer in a prescribed direction in a state of permitting variation in magnetization. The free magnetic layer includes a first free magnetic sub-layer, a misfit-reducing sub-layer for decreasing the lattice mismatch of the free magnetic layer with the first antiferromagnetic layer, and a second free magnetic sub-layer ferromagnetically coupled to the first free magnetic sub-layer in this order from the first antiferromagnetic layer side.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: January 22, 2019
    Assignee: ALPS ELECTRIC CO., LTD.
    Inventors: Yosuke Ide, Masamichi Saito
  • Patent number: 9945913
    Abstract: A magnetic sensor includes: a magnetoresistive effect element having a sensitivity axis in a specific direction in which a fixed magnetic layer, a nonmagnetic material layer, and a free magnetic layer are laminated in this order; an antiferromagnetic layer which generates an exchange coupling bias with the free magnetic layer and which aligns the magnetization direction thereof in a predetermined direction provided on the free magnetic layer; and a ferromagnetic layer which generates an exchange coupling bias with the antiferromagnetic layer and which aligns the magnetization direction thereof in a predetermined direction provided on the antiferromagnetic layer. The magnetization direction on the exchange coupling bias in the free magnetic layer is the same direction as that on the exchange coupling bias in the ferromagnetic layer, and the ferromagnetic layer is able to impart a reflux magnetic field having a component along a sensitivity axis to the free magnetic layer.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: April 17, 2018
    Assignee: ALPS ELECTRIC CO., LTD.
    Inventors: Yosuke Ide, Masamichi Saito
  • Publication number: 20160356865
    Abstract: A magnetic sensor includes: a magnetoresistive effect element having a sensitivity axis in a specific direction in which a fixed magnetic layer, a nonmagnetic material layer, and a free magnetic layer are laminated in this order; an antiferromagnetic layer which generates an exchange coupling bias with the free magnetic layer and which aligns the magnetization direction thereof in a predetermined direction provided on the free magnetic layer; and a ferromagnetic layer which generates an exchange coupling bias with the antiferromagnetic layer and which aligns the magnetization direction thereof in a predetermined direction provided on the antiferromagnetic layer. The magnetization direction on the exchange coupling bias in the free magnetic layer is the same direction as that on the exchange coupling bias in the ferromagnetic layer, and the ferromagnetic layer is able to impart a reflux magnetic field having a component along a sensitivity axis to the free magnetic layer.
    Type: Application
    Filed: August 16, 2016
    Publication date: December 8, 2016
    Inventors: Yosuke IDE, Masamichi SAITO
  • Patent number: 9435831
    Abstract: A current sensor includes a magnetic sensor module including a plurality of magnetic sensor units connected in series. The magnetic sensor units each include a first magnetic sensor element and a second magnetic sensor element which have sensitivity axes oriented in opposite directions. A first terminal of the first magnetic sensor unit is connected to a first potential source. A third terminal of the first magnetic sensor unit is connected to a second potential source. A second terminal and a fourth terminal of the last magnetic sensor unit are connected to constitute a sensor output terminal. The first terminal of each of the magnetic sensor units excluding the first magnetic sensor unit is connected to the second terminal of the next magnetic sensor unit and the third terminal thereof is connected to the fourth terminal of the next magnetic sensor unit.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: September 6, 2016
    Assignee: ALPS GREEN DEVICES CO., LTD.
    Inventors: Mitsuo Aratono, Masahiro Iizuka, Masamichi Saito, Akira Takahashi, Shigenobu Miyajima, Kenji Ichinohe, Yoshihiro Nishiyama, Yosuke Ide, Shinji Mitsuya
  • Publication number: 20160238675
    Abstract: A magnetometric sensor comprises a magnetoresistance effect element having a sensitivity axis in a specific direction; including a fixed magnetic layer, a nonmagnetic material layer, and a free magnetic layer stacked in this order on a substrate; and including a first antiferromagnetic layer on the free magnetic layer on the opposite side to the side facing the nonmagnetic material layer to cause an exchange coupling bias between the first antiferromagnetic layer and the free magnetic layer and align the magnetization direction of the free magnetic layer in a prescribed direction in a state of permitting variation in magnetization. The free magnetic layer includes a first free magnetic sub-layer, a misfit-reducing sub-layer for decreasing the lattice mismatch of the free magnetic layer with the first antiferromagnetic layer, and a second free magnetic sub-layer ferromagnetically coupled to the first free magnetic sub-layer in this order from the first antiferromagnetic layer side.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 18, 2016
    Inventors: Yosuke IDE, Masamichi SAITO
  • Patent number: 9229032
    Abstract: A current sensor includes a magnetoresistive element that has a stripe shape and that has a sensing axis in a certain direction. The magnetoresistive element includes element portions that are disposed so as to be spaced apart from each other in a longitudinal direction of the stripe shape, and permanent magnet portions, each of which is disposed between adjacent ones of the element portions. Each element portion has a layered structure including a free magnetic layer whose magnetization direction is changed with respect to an external magnetic field, a non-magnetic intermediate layer, and a ferromagnetic pinned layer whose magnetization direction is pinned. The permanent magnet portion includes a hard bias layer, and an electrode layer that is disposed so as to cover the hard bias layer.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: January 5, 2016
    Assignee: ALPS GREEN DEVICES CO., LTD.
    Inventors: Yosuke Ide, Masamichi Saito, Akira Takahashi, Kenji Ichinohe, Yoshihiro Nishiyama
  • Patent number: 9207264
    Abstract: A current sensor includes a substrate, a conductive body being provided above the substrate and extending in one direction, and magnetoresistance effect elements being provided between the substrate and the conductive body and outputting output signals owing to an induction magnetic field from a current to be measured being conducted through the conductive body, wherein each of the magnetoresistance effect elements has a laminated structure including a ferromagnetic fixed layer whose magnetization direction is fixed, a non-magnetic intermediate layer, and a free magnetic layer whose magnetization direction fluctuates with respect to an external magnetic field, the ferromagnetic fixed layer is a self-pinned type formed by antiferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film through an antiparallel coupling film, the Curie temperatures of the first ferromagnetic film and the second ferromagnetic film are approximately equal, and a difference between the magnetization amounts
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: December 8, 2015
    Assignee: ALPS GREEN DEVICES CO., LTD.
    Inventors: Yosuke Ide, Masamichi Saito, Akira Takahashi, Masahiro Iizuka, Kenji Ichinohe, Yoshihiro Nishiyama, Mitsuo Aratono
  • Patent number: 9146260
    Abstract: A magnetic balance type current sensor includes a magnetic balance type current sensor including a magnetoresistance effect element whose characteristic changes owing to an induction magnetic field from a current to be measured flowing through a conductor, a feedback coil configured to be disposed in the vicinity of the magnetoresistance effect element and generate a cancelling magnetic field cancelling out the induction magnetic field, a magnetic shield configured to attenuate the induction magnetic field and enhance the cancelling magnetic field, and a hard bias layer configured to be provided on or above the magnetic shield.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: September 29, 2015
    Assignee: ALPS GREEN DEVICES CO., LTD.
    Inventors: Yoshihiro Nishiyama, Masamichi Saito, Akira Takahashi, Masahiro Iizuka
  • Patent number: 8952689
    Abstract: A magnetism sensor comprises a magnetoresistive element, the resistance of which changes due to the application of an induced magnetic field from the current being measured, and a fixed-resistance element. The fixed-resistance element has a self-pinned ferromagnetic fixed layer comprising a first ferromagnetic film and a second ferromagnetic film coupled antiferromagnetically with an antiparallel coupling film interposed therebetween. The antiparallel coupling film is a ruthenium film that exhibits an antiferromagnetic coupling effect with a first peak thickness. The difference between the degrees of magnetization of the first ferromagnetic film and the second ferromagnetic film is effectively zero.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: February 10, 2015
    Assignee: Alps Electric Co., Ltd.
    Inventors: Yosuke Ide, Masamichi Saito
  • Patent number: 8760158
    Abstract: A current sensor including a magnetic detecting bridge circuit which is constituted of four magneto-resistance effect elements with a resistance value varied by application of an induced magnetic field from a current to be measured, and which has an output between two magneto-resistance effect elements. The four magneto-resistance effect elements have the same resistance change rate, and include a self-pinned type ferromagnetic fixed layer which is formed by anti-ferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film via an antiparallel coupling film therebetween, a nonmagnetic intermediate layer, and a soft magnetic free layer. Magnetization directions of the ferromagnetic fixed layers of the two magneto-resistance effect elements providing the output are different from each other by 180°. The magnetic detecting bridge circuit has wiring symmetrical to a power supply point.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 24, 2014
    Assignee: Alps Green Devices Co., Ltd.
    Inventors: Kenji Ichinohe, Masamichi Saito, Akira Takahashi, Yosuke Ide
  • Patent number: 8754642
    Abstract: A magnetic balance type current sensor includes a magnetoresistance effect element whose resistance value changes owing to the application of an induction magnetic field from a current to be measured; a feedback coil disposed in the vicinity of the magnetoresistance effect element and generating a cancelling magnetic field cancelling out the induction magnetic field; a magnetic field detection bridge circuit including two outputs causing a voltage difference corresponding to the induction magnetic field to occur; and a magnetic shield attenuating the induction magnetic field and enhancing the cancelling magnetic field, wherein, on the basis of the current flowing through the feedback coil at the time of an equilibrium state in which the induction magnetic field and the cancelling magnetic field are cancelled out, the current to be measured is measured, wherein the feedback coil, the magnetic shield, and the magnetic field detection bridge circuit are formed on a same substrate.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 17, 2014
    Assignee: Alps Green Devices., Ltd.
    Inventors: Yosuke Ide, Masahiro Iizuka, Masamichi Saito, Akira Takahashi, Hideharu Matsuo, Tsuyoshi Nojima, Shigenobu Miyajima, Naoki Sakatsume, Kenji Ichinohe, Yoshihiro Nishiyama, Tatsuya Kogure, Hidekazu Kobayashi
  • Publication number: 20130278251
    Abstract: A current sensor including a magnetic detecting bridge circuit which is constituted of four magneto-resistance effect elements with a resistance value varied by application of an induced magnetic field from a current to be measured, and which has an output between two magneto-resistance effect elements. The four magneto-resistance effect elements have the same resistance change rate, and include a self-pinned type ferromagnetic fixed layer which is formed by anti-ferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film via an antiparallel coupling film therebetween, a nonmagnetic intermediate layer, and a soft magnetic free layer. Magnetization directions of the ferromagnetic fixed layers of the two magneto-resistance effect elements providing the output are different from each other by 180°. The magnetic detecting bridge circuit has wiring symmetrical to a power supply point.
    Type: Application
    Filed: June 13, 2013
    Publication date: October 24, 2013
    Inventors: Kenji ICHINOHE, Masamichi SAITO, Akira TAKAHASHI, Yosuke IDE
  • Publication number: 20130265038
    Abstract: A magnetic proportional current sensor includes a magnetic-field detection bridge circuit constituted by four magnetoresistive elements having resistance values changed with application of an induced magnetic field from a current to be measured. Each of the four magnetoresistive elements includes a ferromagnetic pinned layer made up of a first ferromagnetic film and a second ferromagnetic film antiferromagnetically coupled to each other with an antiparallel coupling film interposed therebetween, a nonmagnetic intermediate layer, and a soft magnetic free layer. The first ferromagnetic film and the second ferromagnetic film have substantially equal Curie temperatures and have magnetization magnitudes with a substantially zero difference therebetween.
    Type: Application
    Filed: June 3, 2013
    Publication date: October 10, 2013
    Inventors: Yosuke IDE, Masamichi SAITO, Akira TAKAHASHI, Kenji ICHINOHE
  • Publication number: 20130265040
    Abstract: A current sensor includes a substrate, a conductive body being provided above the substrate and extending in one direction, and magnetoresistance effect elements being provided between the substrate and the conductive body and outputting output signals owing to an induction magnetic field from a current to be measured being conducted through the conductive body, wherein each of the magnetoresistance effect elements has a laminated structure including a ferromagnetic fixed layer whose magnetization direction is fixed, a non-magnetic intermediate layer, and a free magnetic layer whose magnetization direction fluctuates with respect to an external magnetic field, the ferromagnetic fixed layer is a self-pinned type formed by antiferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film through an antiparallel coupling film, the Curie temperatures of the first ferromagnetic film and the second ferromagnetic film are approximately equal, and a difference between the magnetization amounts
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Inventors: Yosuke IDE, Masamichi SAITO, Akira TAKAHASHI, Masahiro IIZUKA, Kenji ICHINOHE, Yoshihiro NISHIYAMA, Mitsuo ARATONO
  • Publication number: 20130257422
    Abstract: A magnetic sensor of the present invention includes a magnetoresistive element having a sensitivity axis in a specified direction, the magnetoresistive element having a laminated structure including a ferromagnetic pinned layer having a pinned magnetization direction, a nonmagnetic intermediate layer, a free magnetic layer having a magnetization direction varying with an external magnetic field, and an antiferromagnetic layer which applies an exchange coupling magnetic field to the free magnetic layer.
    Type: Application
    Filed: May 29, 2013
    Publication date: October 3, 2013
    Inventors: Fumihito KOIKE, Kota ASATSUMA, Masamichi SAITO, Akira TAKAHASHI, Yosuke IDE
  • Publication number: 20130249531
    Abstract: A current sensor includes a magnetic sensor module including a plurality of magnetic sensor units connected in series. The magnetic sensor units each include a first magnetic sensor element and a second magnetic sensor element which have sensitivity axes oriented in opposite directions. A first terminal of the first magnetic sensor unit is connected to a first potential source. A third terminal of the first magnetic sensor unit is connected to a second potential source. A second terminal and a fourth terminal of the last magnetic sensor unit are connected to constitute a sensor output terminal. The first terminal of each of the magnetic sensor units excluding the first magnetic sensor unit is connected to the second terminal of the next magnetic sensor unit and the third terminal thereof is connected to the fourth terminal of the next magnetic sensor unit.
    Type: Application
    Filed: May 29, 2013
    Publication date: September 26, 2013
    Applicant: ALPS GREEN DEVICES CO., LTD.
    Inventors: Mitsuo ARATONO, Masahiro IIZUKA, Masamichi SAITO, Akira TAKAHASHI, Shigenobu MIYAJIMA, Kenji ICHINOHE, Yoshihiro NISHIYAMA, Yosuke IDE, Shinji MITSUYA