Patents by Inventor Masatoshi Arasawa

Masatoshi Arasawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230155348
    Abstract: A semiconductor optical amplifier integrated laser includes a semiconductor laser oscillator portion that oscillates laser light having a wavelength included in a gain band and a semiconductor optical amplifier portion that amplifies laser light output from the semiconductor laser oscillator portion. The semiconductor laser oscillator portion and the semiconductor optical amplifier portion have one common p-i-n structure, the common p-i-n structure includes an active layer, a cladding layer provided apart from the active layer, and a common functional layer formed in the cladding layer, and the common functional layer includes a first portion that reflects light having a wavelength within the gain band in the semiconductor laser oscillator portion and a second portion that transmits light having a wavelength within the gain band in the semiconductor optical amplifier portion.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 18, 2023
    Inventors: Atsushi NAKAMURA, Kaoru Okamoto, Masatoshi Arasawa, Tetsuya Nishida, Yasushi Sakuma, Shigetaka Hamada, Ryosuke Nakajima
  • Patent number: 11552448
    Abstract: A semiconductor optical amplifier integrated laser includes a semiconductor laser oscillator portion that oscillates laser light having a wavelength included in a gain band and a semiconductor optical amplifier portion that amplifies laser light output from the semiconductor laser oscillator portion. The semiconductor laser oscillator portion and the semiconductor optical amplifier portion have one common p-i-n structure, the common p-i-n structure includes an active layer, a cladding layer provided apart from the active layer, and a common functional layer formed in the cladding layer, and the common functional layer includes a first portion that reflects light having a wavelength within the gain band in the semiconductor laser oscillator portion and a second portion that transmits light having a wavelength within the gain band in the semiconductor optical amplifier portion.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: January 10, 2023
    Assignee: Lumentum Japan, Inc.
    Inventors: Atsushi Nakamura, Kaoru Okamoto, Masatoshi Arasawa, Tetsuya Nishida, Yasushi Sakuma, Shigetaka Hamada, Ryosuke Nakajima
  • Publication number: 20220166193
    Abstract: To provide an optical semiconductor device having excellent long-term reliability, the optical semiconductor device includes: a substrate; a mesa structure provided on the substrate; a semiconductor burial layer provided in contact with two sides of the mesa structure; and an electrode containing Au, which is provided above the semiconductor burial layer. The mesa structure includes a first conductivity type semiconductor layer, a multiple-quantum well layer, and a second conductivity type semiconductor layer, which are stacked in the stated order from a substrate side. The semiconductor burial layer includes a first semi-insulating InP layer provided in contact with side portions of the mesa structure, a first anti-diffusion layer provided in contact with the first semi-insulating InP layer, and a second semi-insulating InP layer provided on the first anti-diffusion layer. The first anti-diffusion layer has an Au diffusion constant that is smaller than that of the first semi-insulating InP layer.
    Type: Application
    Filed: June 22, 2021
    Publication date: May 26, 2022
    Inventors: Atsushi NAKAMURA, Hayato TAKITA, Shigetaka HAMADA, Ryosuke NAKAJIMA, Masatoshi ARASAWA, Ryu WASHINO
  • Publication number: 20210234333
    Abstract: A semiconductor optical amplifier integrated laser includes a semiconductor laser oscillator portion that oscillates laser light having a wavelength included in a gain band and a semiconductor optical amplifier portion that amplifies laser light output from the semiconductor laser oscillator portion. The semiconductor laser oscillator portion and the semiconductor optical amplifier portion have one common p-i-n structure, the common p-i-n structure includes an active layer, a cladding layer provided apart from the active layer, and a common functional layer formed in the cladding layer, and the common functional layer includes a first portion that reflects light having a wavelength within the gain band in the semiconductor laser oscillator portion and a second portion that transmits light having a wavelength within the gain band in the semiconductor optical amplifier portion.
    Type: Application
    Filed: June 15, 2020
    Publication date: July 29, 2021
    Inventors: Atsushi NAKAMURA, Kaoru OKAMOTO, Masatoshi ARASAWA, Tetsuya NISHIDA, Yasushi SAKUMA, Shigetaka HAMADA, Ryosuke NAKAJIMA
  • Patent number: 7675715
    Abstract: In one embodiment, a seed layer, an underlayer, and a magnetic domain control layer are laminated on both sides of a magnetoresistive sheet unit. A lower electrode film is thinly formed on an upper portion of the magnetic domain control film. A portion of the lower electrode film near the magnetoresistive sheet unit does not protrude substantially from an upper surface of the magnetoresistive sheet unit. Should the portion protrude, a step from the upper surface of the magnetoresistive sheet unit is about 14 nm or less. This portion and the upper surface of the magnetoresistive sheet unit are formed into a flat surface. An upper electrode film is formed thickly on an upper portion of the lower electrode film on an outside thereof so as to circumvent the flat surface. A protective layer, an upper gap film, and an upper magnetic shield film are also formed.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: March 9, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Masatoshi Arasawa, Izuru Ishii, Shuichi Kojima, Naoki Koyama, Norihiro Ookawa
  • Patent number: 7468870
    Abstract: Making thinner the magnetic domain control layer deteriorates the magnetic properties. Also, disturbances tend to increase the magnetization dispersion of the magnetic domain control layer, thereby lowering the magnetic domain control bias magnetic field. In one embodiment of the invention, a first magnetic domain control layer is provided in the proximity of the free layer of the GMR sensor in such a way that the track width is Twr1. Outside the first magnetic domain control layer is provided a second magnetic domain control layer. The second magnetic domain control layer placed outside the first magnetic domain control layer gives the first magnetic domain control layer an external bias field. The amount of magnetization of the tip of the first magnetic domain control layer is polarized and increased by the bias magnetic field from the second magnetic domain control layer.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: December 23, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Masatoshi Arasawa, Wataru Kimura, Shuichi Kojima, Koji Okazaki, Norihiro Ookawa
  • Publication number: 20080043376
    Abstract: A magnetoresistive head comprises a free magnetic layer that has first and second free magnetic films sandwiching a non-magnetic intermediate film therebetween, the respective magnetizing directions of the first and the second free magnetic films are antiparallel. The length of the free magnetic layer in the direction of the track width is 200 nm or less, and a difference between a product of saturation magnetic flux density and a film thickness of the first free magnetic film, and that of the second free magnetic film is within a range from 1 to 3 nmT. By this structure, the variation of output and the variation of asymmetry is greatly decreased at a track width of 200 nm or less.
    Type: Application
    Filed: October 5, 2007
    Publication date: February 21, 2008
    Applicants: Hitachi, Ltd.
    Inventors: Takayoshi Ohtsu, Satoshi Shigematsu, Kouji Nishioka, Takao Imagawa, Kouji Kataoka, Masatoshi Arasawa, Norifumi Miyamoto
  • Patent number: 7292416
    Abstract: A magnetoresistive head comprises a free magnetic layer that has first and second free magnetic films sandwiching a non-magnetic intermediate film therebetween, the respective magnetizing directions of the first and the second free magnetic films are antiparallel. The length of the free magnetic layer in the direction of the track width is 200 nm or less, and a difference between a product of saturation magnetic flux density and a film thickness of the first free magnetic film, and that of the second free magnetic film is within a range from 1 to 3 nmT. By this structure, the variation of output and the variation of asymmetry is greatly decreased at a track width of 200 nm or less.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: November 6, 2007
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Takayoshi Ohtsu, Satoshi Shigematsu, Kouji Nishioka, Takao Imagawa, Kouji Kataoka, Masatoshi Arasawa, Norifumi Miyamoto
  • Publication number: 20070079498
    Abstract: Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle ? which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
    Type: Application
    Filed: December 11, 2006
    Publication date: April 12, 2007
    Inventors: Masatoshi Arasawa, Haruko Tanaka, Makoto Morijiri, Koichi Nishioka, Shuichi Kojima, Masayasu Kagawa
  • Patent number: 7159304
    Abstract: Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle ? which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: January 9, 2007
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Masatoshi Arasawa, Haruko Tanaka, Makoto Morijiri, Koichi Nishioka, Shuichi Kojima, Masayasu Kagawa
  • Publication number: 20060158793
    Abstract: Making thinner the magnetic domain control layer deteriorates the magnetic properties. Also, disturbances tend to increase the magnetization dispersion of the magnetic domain control layer, thereby lowering the magnetic domain control bias magnetic field. In one embodiment of the invention, a first magnetic domain control layer is provided in the proximity of the free layer of the GMR sensor in such a way that the track width is Twr1. Outside the first magnetic domain control layer is provided a second magnetic domain control layer. The second magnetic domain control layer placed outside the first magnetic domain control layer gives the first magnetic domain control layer an external bias field. The amount of magnetization of the tip of the first magnetic domain control layer is polarized and increased by the bias magnetic field from the second magnetic domain control layer.
    Type: Application
    Filed: December 22, 2005
    Publication date: July 20, 2006
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Masatoshi Arasawa, Wataru Kimura, Shuichi Kojima, Koji Okazaki, Norihiro Ookawa
  • Publication number: 20060152864
    Abstract: A magnetoresistive head comprises a free magnetic layer that has first and second free magnetic films sandwiching a non-magnetic intermediate film therebetween, the respective magnetizing directions of the first and the second free magnetic films are antiparallel. The length of the free magnetic layer in the direction of the track width is 200 nm or less, and a difference between a product of saturation magnetic flux density and a film thickness of the first free magnetic film, and that of the second free magnetic film is within a range from 1 to 3 nmT. By this structure, the variation of output and the variation of asymmetry is greatly decreased at a track width of 200 nm or less.
    Type: Application
    Filed: March 8, 2006
    Publication date: July 13, 2006
    Applicant: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Takayoshi Ohtsu, Satoshi Shigematsu, Kouji Nishioka, Takao Imagawa, Kouji Kataoka, Masatoshi Arasawa, Norifumi Miyamoto
  • Patent number: 7031123
    Abstract: A magnetoresistive head comprises a free magnetic layer that has first and second free magnetic films sandwiching a non-magnetic intermediate film therebetween, the respective magnetizing directions of the first and the second free magnetic films are antiparallel. The length of the free magnetic layer in the direction of the track width is 200 nm or less, and a difference between a product of saturation magnetic flux density and a film thickness of the first free magnetic film, and that of the second free magnetic film is within a range from 1 to 3 nmT. By this structure, the variation of output and the variation of asymmetry is greatly decreased at a track width of 200 nm or less.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: April 18, 2006
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Takayoshi Ohtsu, Satoshi Shigematsu, Kouji Nishioka, Takao Imagawa, Kouji Kataoka, Masatoshi Arasawa, Norifumi Miyamoto
  • Publication number: 20060056112
    Abstract: Making a geometric track width small does not decrease a read track width, resulting only in an output being reduced. In one embodiment, a seed layer, an underlayer, and a magnetic domain control layer are laminated on both sides of a magnetoresistive sheet unit. A lower electrode film is thinly formed on an upper portion of the magnetic domain control film. A portion of the lower electrode film near the magnetoresistive sheet unit does not protrude substantially from an upper surface of the magnetoresistive sheet unit. Should the portion protrude, a step from the upper surface of the magnetoresistive sheet unit is about 14 nm or less. This portion and the upper surface of the magnetoresistive sheet unit are formed into a flat surface. An upper electrode film is formed thickly on an upper portion of the lower electrode film on an outside thereof so as to circumvent the flat surface. A protective layer, an upper gap film, and an upper magnetic shield film are also formed.
    Type: Application
    Filed: September 14, 2005
    Publication date: March 16, 2006
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Masatoshi Arasawa, Izuru Ishii, Shuichi Kojima, Naoki Koyama, Norihiro Ookawa
  • Publication number: 20040158973
    Abstract: Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle &thgr; which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Inventors: Masatoshi Arasawa, Haruko Tanaka, Makoto Morijiri, Koichi Nishioka, Shuichi Kojima, Masayasu Kagawa
  • Patent number: 6717778
    Abstract: Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle &thgr; which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: April 6, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Masatoshi Arasawa, Haruko Tanaka, Makoto Morijiri, Koichi Nishioka, Shuichi Kojima, Masayasu Kagawa
  • Publication number: 20040052009
    Abstract: A magnetoresistive head comprises a free magnetic layer that has first and second free magnetic films sandwiching a non-magnetic intermediate film therebetween, the respective magnetizing directions of the first and the second free magnetic films are antiparallel. The length of the free magnetic layer in the direction of the track width is 200 nm or less, and a difference between a product of saturation magnetic flux density and a film thickness of the first free magnetic film, and that of the second free magnetic film is within a range from 1 to 3 nmT. By this structure, the variation of output and the variation of asymmetry is greatly decreased at a track width of 200 nm or less.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 18, 2004
    Applicant: Hitachi Global Storage Technologies
    Inventors: Takayoshi Ohtsu, Satoshi Shigematsu, Kouji Nishioka, Takao Imagawa, Kouji Kataoka, Masatoshi Arasawa, Norifumi Miyamoto
  • Publication number: 20030189799
    Abstract: A magnetoresistive reproducing head is manufactured by forming a magnetoresistive film and a lead layer continuously, then etching only the lead layer by using a first layer photo-resist pattern, forming a second layer photo-resistive pattern while leaving the first layer photo-resist pattern, etching the magnetoresistive film and then forming a domain control film and an outer lead layer, thereby enabling to avoid the effect at all on the positional relation between the lead layer and domain control film, whereby a head in which the riding amount of the lead layer on the magnetoresistive film is in right-to-left symmetry and the sensitivity profile is in right-to-left symmetry can be manufactured at a good yield.
    Type: Application
    Filed: August 16, 2002
    Publication date: October 9, 2003
    Inventors: Yasunobu Yanagisawa, Akira Morinaga, Masatoshi Arasawa, Shuichi Kojima, Makoto Morijiri
  • Publication number: 20020064005
    Abstract: Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle &thgr; which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
    Type: Application
    Filed: August 17, 2001
    Publication date: May 30, 2002
    Inventors: Masatoshi Arasawa, Haruko Tanaka, Makoto Morijiri, Koichi Nishioka, Shuichi Kojima, Masayasu Kagawa