Patents by Inventor Masatoshi Wakagi
Masatoshi Wakagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10823992Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: GrantFiled: September 18, 2019Date of Patent: November 3, 2020Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.Inventors: Kazuhiko Yanagawa, Yasushi Iwakabe, Yoshiaki Nakayoshi, Masatoshi Wakagi
-
Publication number: 20200012133Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: ApplicationFiled: September 18, 2019Publication date: January 9, 2020Inventors: Kazuhiko YANAGAWA, Yasushi IWAKABE, Yoshiaki NAKAYOSHI, Masatoshi WAKAGI
-
Patent number: 10466519Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: GrantFiled: May 2, 2018Date of Patent: November 5, 2019Assignees: Japan Dlsplay Inc., Panasonic Liquid Crystal Display Co., Ltd.Inventors: Kazuhiko Yanagawa, Yasushi Iwakabe, Yoshiaki Nakayoshi, Masatoshi Wakagi
-
Publication number: 20180252953Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: ApplicationFiled: May 2, 2018Publication date: September 6, 2018Inventors: Kazuhiko Yanagawa, Yasushi Iwakabe, Yoshiaki Nakayoshi, Masatoshi Wakagi
-
Patent number: 10018859Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: GrantFiled: June 8, 2017Date of Patent: July 10, 2018Assignees: Japan DIsplay Inc., Panasonic Liquid Crystal Display Co., Ltd.Inventors: Kazuhiko Yanagawa, Yasushi Iwakabe, Yoshiaki Nakayoshi, Masatoshi Wakagi
-
Patent number: 9991336Abstract: An anode electrode and a cathode electrode formed on a silicon semiconductor substrate, p-type layer formed next to the anode electrode, an n-type layer formed next to the cathode electrode by a V-group element being diffused, an n? layer formed between the p-type layer and the n-type layer, and an n-buffer layer formed between the n? layer and the n-type layer and containing oxygen are provided and an oxygen concentration in an area of a width of at least 30 ?m from a surface on a side of the n-type layer of the cathode electrode toward the anode electrode is set to 1×1017 cm?3 or more and also the oxygen concentration of the n? layer in a position in contact with the p-type layer is set to less than 3×1017 cm?3.Type: GrantFiled: September 5, 2017Date of Patent: June 5, 2018Assignee: Hitachi Power Semiconductor Device Ltd.Inventors: Masatoshi Wakagi, Taiga Arai, Mutsuhiro Mori, Tomoyasu Furukawa
-
Publication number: 20180090564Abstract: An anode electrode and a cathode electrode formed on a silicon semiconductor substrate, p-type layer formed next to the anode electrode, an n-type layer formed next to the cathode electrode by a V-group element being diffused, an n? layer formed between the p-type layer and the n-type layer, and an n-buffer layer formed between the n? layer and the n-type layer and containing oxygen are provided and an oxygen concentration in an area of a width of at least 30 ?m from a surface on a side of the n-type layer of the cathode electrode toward the anode electrode is set to 1×1017 cm?3 or more and also the oxygen concentration of the n? layer in a position in contact with the p-type layer is set to less than 3×1017 cm?3.Type: ApplicationFiled: September 5, 2017Publication date: March 29, 2018Applicant: HITACHI POWER SEMICONDUCTOR DEVICE, LTD.Inventors: Masatoshi WAKAGI, Taiga ARAI, Mutsuhiro MORI, Tomoyasu FURUKAWA
-
Publication number: 20170317075Abstract: A diode includes an anode electrode layer; a cathode electrode layer; a buffer layer of a first conductivity type formed between the anode electrode layer and the cathode electrode layer in a region extending to a location at a distance of 30 ?m or more from the cathode electrode layer; a first semiconductor layer of the first conductivity type formed in a region between the anode electrode layer and the cathode electrode layer, and being in contact with the buffer layer of the first conductivity type; and a second semiconductor layer of a second conductivity type formed in a region between the anode electrode layer and the first semiconductor layer of the first conductivity type. The carrier concentration in the first semiconductor layer is lower than the carrier concentration in the buffer layer. The carrier concentration in the buffer layer is less than 1×1015 cm?3.Type: ApplicationFiled: April 24, 2017Publication date: November 2, 2017Inventors: Taiga ARAI, Masatoshi WAKAGI, Tetsuya ISHIMARU, Mutsuhiro MORI
-
Publication number: 20170269414Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: ApplicationFiled: June 8, 2017Publication date: September 21, 2017Inventors: Kazuhiko YANAGAWA, Yasushi IWAKABE, Yoshiaki NAKAYOSHI, Masatoshi WAKAGI
-
Patent number: 9715132Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: GrantFiled: October 10, 2014Date of Patent: July 25, 2017Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.Inventors: Kazuhiko Yanagawa, Yasushi Iwakabe, Yoshiaki Nakayoshi, Masatoshi Wakagi
-
Patent number: 9097922Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: GrantFiled: January 16, 2015Date of Patent: August 4, 2015Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.Inventors: Kazuhiko Yanagawa, Yasushi Iwakabe, Yoshiaki Nakayoshi, Masatoshi Wakagi
-
Publication number: 20150131014Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: ApplicationFiled: January 16, 2015Publication date: May 14, 2015Inventors: Kazuhiko YANAGAWA, Yasushi IWAKABE, Yoshiaki NAKAYOSHI, Masatoshi WAKAGI
-
Publication number: 20150077689Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: ApplicationFiled: October 10, 2014Publication date: March 19, 2015Inventors: Kazuhiko YANAGAWA, Yasushi IWAKABE, Yoshiaki NAKAYOSHI, Masatoshi WAKAGI
-
Patent number: 8885137Abstract: There is provided a liquid crystal display (LCD) device that prevents light leaks near spacers. The LCD device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed opposite each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer. The LCD device includes spacers on a liquid-crystal-side surface of one substrate, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes on the insulating film's upper surface. Each electrode contributes to controlling the optical transmissivity of the liquid crystal layer. Each spacer has a vertex surface disposed opposite to the signal lines. A portion of each electrode extends to the upper surface of a corresponding signal line. The extended portion is opposite to a part of a spacer's vertex surface disposed opposite to the corresponding signal line.Type: GrantFiled: November 10, 2011Date of Patent: November 11, 2014Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.Inventors: Kazuhiko Yanagawa, Yasushi Iwakabe, Yoshiaki Nakayoshi, Masatoshi Wakagi
-
Patent number: 8344382Abstract: Provided is a method of promoting a deposition of semiconductor crystal nuclei on an insulating film such as a silicon oxide film even at a low temperature of 450° C. or lower in a reactive thermal CVD method. As one means thereof, a first semiconductor film is formed on an insulating substrate, and then semiconductor crystal nuclei are formed on parts of the first semiconductor film and simultaneously the first semiconductor film other than that in forming regions of the semiconductor crystal nuclei and their peripheries is removed by etching. Thereafter, a second semiconductor film is formed with using the semiconductor crystal nuclei as seeds.Type: GrantFiled: June 26, 2009Date of Patent: January 1, 2013Assignees: Hitachi, Ltd., Tokyo Institute of TechnologyInventors: Junichi Hanna, Isao Suzumura, Mieko Matsumura, Mutsuko Hatano, Kenichi Onisawa, Masatoshi Wakagi, Etsuko Nishimura, Akiko Kagatsume
-
Patent number: 8309960Abstract: A display device includes a plurality of thin-film transistors formed on a substrate on which a display area is formed. At least one of the plurality of thin-film transistors includes a gate electrode, agate insulating film formed to cover the gate electrode, an interlayer insulating film formed on an upper surface of the gate insulating film and having an opening formed in an area where the gate electrode is formed in plan view, a pair of heavily-doped semiconductor films arranged on an upper surface of the interlayer insulating film with the opening interposed therebetween, a polycrystalline semiconductor film formed across the opening and formed in the area, the polycrystalline semiconductor film being electrically connected to the pair of heavily-doped semiconductor films, and a pair of electrodes formed to overlap the pair of heavily-doped semiconductor films, respectively, without overlapping the polycrystalline semiconductor film.Type: GrantFiled: February 9, 2010Date of Patent: November 13, 2012Assignees: Hitachi Displays, Ltd., Panasonic Liquid Crystal Display Co., Ltd.Inventors: Yoshiaki Toyota, Mieko Matsumura, Masatoshi Wakagi
-
Patent number: 8093585Abstract: Each TFT for driving each of a plurality of pixels arranged in a matrix-like configuration is configured using a stagger-type polycrystalline-Si TFT. A gate electrode, which is composed of a high-heat-resistant material capable of resisting high temperature at the time of polycrystalline-Si film formation, is disposed at a lower layer as compared with the polycrystalline-Si layer that forms a channel of each TFT. A gate line, which is composed of a low-resistance material, is disposed at an upper layer as compared with the polycrystalline-Si layer. The gate electrode and the gate line are connected to each other via a through-hole bored in a gate insulation film. Respective configuration components of each organic electro-luminescent element are partially co-used at the time of the line formation, thereby suppressing an increase in the steps, processes, and configuration components.Type: GrantFiled: November 21, 2008Date of Patent: January 10, 2012Assignee: Hitachi, Ltd.Inventors: Etsuko Nishimura, Masatoshi Wakagi, Kenichi Onisawa, Mieko Matsumura
-
Patent number: 8026535Abstract: In a thin film transistor, a semiconductor layer containing Si and Ge is applied, a Ge concentration of this semiconductor layer is high at the side of the insulating substrate, and crystalline orientation of the semiconductor layer indicates a random orientation in a region of 20 nm from the side of the insulating substrate, and indicates a (111), (110) or (100) preferential orientation at the film surface side of the semiconductor layer.Type: GrantFiled: January 24, 2008Date of Patent: September 27, 2011Assignees: Hitachi, Ltd., Tokyo Institute of TechnologyInventors: Masatoshi Wakagi, Junichi Hanna
-
Publication number: 20110108841Abstract: Provided is a method of promoting a deposition of semiconductor crystal nuclei on an insulating film such as a silicon oxide film even at a low temperature of 450° C. or lower in a reactive thermal CVD method. As one means thereof, a first semiconductor film is formed on an insulating substrate, and then semiconductor crystal nuclei are formed on parts of the first semiconductor film and simultaneously the first semiconductor film other than that in forming regions of the semiconductor crystal nuclei and their peripheries is removed by etching. Thereafter, a second semiconductor film is formed with using the semiconductor crystal nuclei as seeds.Type: ApplicationFiled: June 26, 2009Publication date: May 12, 2011Inventors: Junichi Hanna, Isao Suzumura, Mieko Matsumura, Mutsuko Hatano, Kenichi Onisawa, Masatoshi Wakagi, Etsuko Nishimura, Akiko Kagatsume
-
Patent number: 7872629Abstract: A shift register circuit which stably operates with low electric power consumption and can realize a long life. In the shift register circuit constructed by connecting a plurality of fundamental circuits in each of which fundamental clocks of three phases are inputted to input terminals and is constructed by a gate line driving circuit, a timing control circuit, and a holding device control circuit, each of the gate line driving circuit and the timing control circuit has charging devices and holding devices. A node is stabilized by the timing control circuit.Type: GrantFiled: September 26, 2006Date of Patent: January 18, 2011Assignee: Hitachi Displays, Ltd.Inventors: Susumu Edo, Shinichi Komura, Masatoshi Wakagi