Patents by Inventor Masatoshi Yasutake

Masatoshi Yasutake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11143606
    Abstract: To enable evaluation of a shape of a fine particle and a fine particle type, a substrate is set as a substrate on which an isolated fine particle to be measured and an isolated standard fine particle in the vicinity of the isolated fine particle to be measured are disposed, and a scanning electron microscope body including a detector configured to detect secondary charged particles obtained by scanning a surface of the substrate with an electron beam probe, and a computer that processes a detection signal and generates an image of the isolated fine particle to be measured and the isolated standard fine particle are provided. The computer corrects a shape of the isolated fine particle to be measured by using a measurement result of the isolated standard fine particle disposed in the vicinity of the isolated fine particle to be measured.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: October 12, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Tomihiro Hashizume, Masatoshi Yasutake, Tsunenori Nomaguchi, Takafumi Miwa
  • Publication number: 20200371050
    Abstract: To enable evaluation of a shape of a fine particle and a fine particle type, a substrate is set as a substrate on which an isolated fine particle to be measured and an isolated standard fine particle in the vicinity of the isolated fine particle to be measured are disposed, and a scanning electron microscope body including a detector configured to detect secondary charged particles obtained by scanning a surface of the substrate with an electron beam probe, and a computer that processes a detection signal and generates an image of the isolated fine particle to be measured and the isolated standard fine particle are provided. The computer corrects a shape of the isolated fine particle to be measured by using a measurement result of the isolated standard fine particle disposed in the vicinity of the isolated fine particle to be measured.
    Type: Application
    Filed: February 1, 2018
    Publication date: November 26, 2020
    Inventors: Tomihiro Hashizume, Masatoshi Yasutake, Tsunenori Nomaguchi, Takafumi Miwa
  • Patent number: 10697767
    Abstract: To provide a sample for measuring particles enabling the three-dimensional particulate shape to be measured and the particulate species to be evaluated, the sample for measuring particles includes a substrate; isolated nanoparticles to be measured which are disposed on the substrate; and isolated standard nanoparticles which are disposed on the substrate in the vicinity of the isolated nanoparticles to be measured.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: June 30, 2020
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Tomihiro Hashizume, Masatoshi Yasutake, Sanato Nagata
  • Publication number: 20190178640
    Abstract: To provide a sample for measuring particles enabling the three-dimensional particulate shape to be measured and the particulate species to be evaluated, the sample for measuring particles includes a substrate; isolated nanoparticles to be measured which are disposed on the substrate; and isolated standard nanoparticles which are disposed on the substrate in the vicinity of the isolated nanoparticles to be measured.
    Type: Application
    Filed: August 31, 2016
    Publication date: June 13, 2019
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Tomihiro HASHIZUME, Masatoshi YASUTAKE, Sanato NAGATA
  • Patent number: 8657962
    Abstract: Small tweezers having a pair of arms openable and closable is moved closer to a sample and grips a particle attached on a surface of the sample and carries it onto an adhesion member to attach it thereto. The small tweezers are opened to release the particle and brought away from the adhesion member to leave the particle on the adhesion member. A particle removing device includes small tweezers having a pair of arms openable and closable; an opening/closing driving unit that drives the arm or arms to open/close the small tweezers; a stage mounting an adhesion member that attaches thereto a particle to withdraw the particle; and a moving mechanism that moves the small tweezers between the sample and the adhesion member mounted on the stage. Also, an atomic force microscope and a charged ion beam apparatus that include the particle removing device are disclosed.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: February 25, 2014
    Assignee: AOI Electronics Co., Ltd.
    Inventors: Hiroki Hayashi, Takashi Konno, Kouji Iwasaki, Masatoshi Yasutake, Junichi Tashiro
  • Patent number: 8601609
    Abstract: Provided is a friction force microscope that can measure a friction force by a cantilever in a quantitative manner. The friction force microscope includes a friction force calculating mechanism that calculates an effective probe height and a torsional spring constant of the cantilever from bending sensitivity determined from displacement information in a bending direction of the cantilever and torsional sensitivity determined from displacement information in a torsional direction of the cantilever, respectively, so as to use the calculated values for calculating the friction force.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 3, 2013
    Assignee: SII NanoTechnology Inc.
    Inventors: Masatoshi Yasutake, Masafumi Watanabe
  • Publication number: 20120227139
    Abstract: Provided is a friction force microscope that can measure a friction force by a cantilever in a quantitative manner. The friction force microscope includes a friction force calculating mechanism that calculates an effective probe height and a torsional spring constant of the cantilever from bending sensitivity determined from displacement information in a bending direction of the cantilever and torsional sensitivity determined from displacement information in a torsional direction of the cantilever, respectively, so as to use the calculated values for calculating the friction force.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 6, 2012
    Inventors: Masatoshi YASUTAKE, Masafumi Watanabe
  • Patent number: 8111079
    Abstract: A conductivity measuring apparatus includes a probe base having a pair of electrodes disposed on respective opposite surfaces of a portion of the probe base. Observing and grasping probes are supported by the probe base in a cantilever state and are arranged adjancent to and spaced apart from one another by a predetermined distance. The grasping probe has a pair of electrodes disposed on respective opposite surfaces of a portion of the grasping probe confronting the portion of the probe base. A voltage apparatus applies a voltage between the pairs of electrodes on the probe base and the grasping probe to adjust the predetermined distance between the grasping and observing probes. A movement mechanism moves a sample base and the observing and grasping probes relative to each other to bring conductive tips of the observing and grasping probes into contact with respective contact points on a sample supported on the sample base.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: February 7, 2012
    Assignee: SII NanoTechnology Inc.
    Inventors: Masatoshi Yasutake, Takakazu Fukuchi
  • Patent number: 8062494
    Abstract: There is a micro-machining apparatus for removing the micro-machining dust generated at the time of machining while a workpiece M is machined within a liquid W using a probe tip. The apparatus includes a stage on which the workpiece is to be placed; a probe having the probe tip, a machining device having a moving means that moves the stage and the probe relative to each other to machine the workpiece by the probe tip, and a micro-machining dust removing device having a first electrode and a second electrode that are arranged in the liquid so as to sandwich the probe tip therebetween, and a voltage application means that applies a voltage to between both the electrodes to move the micro-machining dust in the liquid.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: November 22, 2011
    Assignees: National University Corporation Shizuoka University, SII Nano Technology Inc.
    Inventors: Futoshi Iwata, Masatoshi Yasutake, Takuya Nakaue, Syuichi Kikuchi, Osamu Takaoka
  • Patent number: 8028567
    Abstract: AFM tweezers that include a first probe, including a triangular prism member having a tip of a ridge which is usable as a probe tip in a scanning probe microscope, and a second probe, including a triangular prism member provided so as to open/close with respect to the first probe, are provided. The first probe and the second probe are juxtaposed such that a predetermined peripheral surface of the triangular prism member of the first probe and a predetermined peripheral surface of the triangular prism member of the second probe face substantially in parallel to each other, and the first probe formed of a notch that prevents interference with a sample when the sample is scanned by the tip of the ridge.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: October 4, 2011
    Assignees: AOI Electronics Co., Ltd., SII Nano Technology Inc.
    Inventors: Tatsuya Kobayashi, Masato Suzuki, Masatoshi Yasutake, Takeshi Umemoto
  • Patent number: 8001831
    Abstract: There is provided a scanning probe microscope employing a positioning apparatus M1 including a unit to be driven in XY direction having a substantially square form in plane geometry at the center of the plane in the XY directions and having a first elastic support that bends in the X-axis direction at least on one side of the square form and a second elastic support that bends in the Y-axis direction at least on one side orthogonal to the side and a support unit that supports a stage unit 1 in the XY directions such that the facing surface can face in parallel against the facing surface of the unit to be driven in the XY directions. The positioning apparatus has a space of a predetermined thickness between the surface corresponding to the unit to be driven in the XY directions at least and the facing surface of the support unit that faces against it, and the space is filled with a viscosity agent.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 23, 2011
    Assignee: SII Nano Technology Inc.
    Inventors: Masafumi Watanabe, Masatoshi Yasutake
  • Patent number: 7987703
    Abstract: A tweezer-equipped scanning probe microscope comprises a first arm with a probing portion, a second arm that moves along an opening direction or a closing direction relative to the first arm, an electrostatic actuator that drives the second arm along the opening direction or the closing direction based upon an opening/closing drive voltage applied thereto, an amplifier that induces self-oscillation in the electrostatic actuator by using an electrically equivalent circuit accompanying the electrostatic actuator as a feedback circuit and causes the second arm to vibrate through the self-oscillation, and a vibration state detection unit that detects a change of vibration state of the second arm as the second arm contacts an object.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: August 2, 2011
    Assignees: AOI Electronics Co., Ltd., SII Nano Technology Inc.
    Inventors: Takashi Konno, Masatoshi Yasutake
  • Patent number: 7926328
    Abstract: There is provided a sample manipulating apparatus which is an apparatus for manipulating a sample mounted on a substrate surface, in which at least position data and shape data are acquired by observing the sample. Thereafter, tweezers are positioned by moving means such that the sample is positioned between an observing probe and a grasping probe based on the two set of data. After positioning, a height of the tweezers is set to a position of being remote from the substrate surface by a constant distance by moving means while monitoring a result of measurement by displacement measuring means. Thereafter, the grasping probe is moved to a side of the observing probe while monitoring the result of measurement by the displacement measuring means at the set height and the sample is grasped while detecting a grasping start point.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: April 19, 2011
    Assignee: SII Nano Technology Inc.
    Inventors: Masatoshi Yasutake, Takeshi Umemoto, Masafumi Watanabe
  • Patent number: 7866205
    Abstract: There is provided a sample operation apparatus in which, by a static electricity force acting between a probe and a sample, an accurate position is gripped without the sample being moved, and the sample can be operated by the probe for an observation, a grip, a release, or the like. In a casing body capable of being sealed, there are installed a sample operation tweezers comprising an observation probe and a grip probe, and a sample base fixing a substrate on which the sample is mounted. By the facts that a surface of the substrate is treated such that its hydrophilic nature is higher than the sample operation tweezers, and that a humidity in the casing body is controlled by a humidity control device, there is made such that an actuation of a grip, a movement, a separation or the like of the sample is performed under a state in which water films are formed on the sample, the substrate and a surface of the sample operation tweezers.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 11, 2011
    Assignee: SII Nano Technology Inc.
    Inventors: Masatoshi Yasutake, Takeshi Umemoto
  • Patent number: 7770474
    Abstract: There is provided a sample operation apparatus in which, by a static electricity force acting between a probe and a sample, an accurate position is gripped without the sample being moved, and the sample can be operated by the probe for an observation, a grip, a release, or the like.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 10, 2010
    Assignee: SII NanoTechnology Inc.
    Inventors: Masatoshi Yasutake, Takeshi Umemoto
  • Publication number: 20090206855
    Abstract: The present invention is a conductivity measuring device comprising that two terminals tweezer having two probes of a observing probe and a grasping probe arranged contiguously along the face which is parallel to a sample support face. Two terminals of a tweezer are pressed while adjusts pressing force to a sample surface, it is galvanized between two terminal tweezer, and conductivity is determined making a current between the two terminals tweezers.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 20, 2009
    Inventor: Masatoshi Yasutake
  • Publication number: 20090188011
    Abstract: To enable to freely interchange a front end shape of a work in accordance with an object of, for example, removing a dust or the like, in addition thereto, even in a case of contaminating a work, to be able to easily deal therewith, and to be able to recognize a defect even when, for example, operated by an operator of a beginner without being governed by a technique of the operator, a tweezers constituted by two arms having probes arranged opposedly to a sample integrated to a scanning probe microscope and constituting an object of observation or working respectively at front ends thereof, and a plurality of kinds of interchanging works one of the plurality of kinds of which is selectively grasped by the tweezers are provided. As the interchanging works, there are an observing stylus work, a work for a contact hole, a corner moving work, a cutting work, a spatula shape work.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 23, 2009
    Inventor: Masatoshi Yasutake
  • Patent number: 7507957
    Abstract: A problem to be resolved by the invention resides in providing a multifunction analyzing apparatus for detecting a shape with high resolution and physical property information capable of not only successively reading a base arrangement from end to end but also specifying a position hybridized by known RNA with regard to a single piece of DNA elongated in one direction on a board. A microscope system of the invention is provided with a fluorescence microscope, a scanning near field microscope and a scanning probe microscope as a detecting system, the microscopes are fixed to a switching mechanism and can be moved to a position at which the various microscopes can observe the same portion of a sample by switching operation of the mechanism. The microscope system of the invention is provided with a function capable of directly detecting a shape and physical property information of one piece of DNA by the scanning probe microscope by multifunction scanning.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: March 24, 2009
    Assignee: SII NanoTechnology Inc.
    Inventors: Masamichi Fujihira, Masatoshi Yasutake, Tatsuaki Ataka
  • Patent number: 7495215
    Abstract: The present invention provides a probe for a scanning magnetic force microscope having a resolution sufficient to allow observation of a magnetic storage medium with 1200 kFCI or higher recording densities, a method for producing the probe, and a method for forming a ferromagnetic alloy film on a carbon nanotube. In the context of the present invention, the probe for a scanning magnetic force microscope comprises a carbon nanotube whose surface is at least in part coated with a ferromagnetic alloy film consisting of any one of a Co—Fe alloy and a Co—Ni alloy, wherein the arithmetic mean roughness (Ra 10 ?m) of the surface of the ferromagnetic alloy film is controlled to 1.15 nm or less. A method for producing such probes for a scanning magnetic force microscope and a method for forming such a ferromagnetic alloy film on a carbon nanotube, so as to achieve such mean surface roughness by controlling the growth rate of the ferromagnetic alloy film within the range of 1.0 to 2.5 nm/min, is also disclosed.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: February 24, 2009
    Assignees: National Institute of Advanced Industrial Science and Technology, SII Nanotechnology Inc.
    Inventors: Hiroyuki Akinaga, Yasuyuki Semba, Hiroshi Yokoyama, Masatoshi Yasutake, Hiromi Kuramochi
  • Patent number: 7476418
    Abstract: In a method for fabricating a nanometer-scale structure by arranging nanotubes in a predetermined direction at a predetermined position, the method for fabricating a nanometer-scale structure comprises a first step of planarizing a substrate by etching a predetermined part by irradiating a focused energy beam to the sample, a second step of decomposing and depositing an organic gas into a columnar structure with an objective of determining the position and direction, and a third step of attaching and fixing the nanotube by using the thus deposited columnar structure as a standard of position and direction.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: January 13, 2009
    Assignee: SII NanoTechnology Inc.
    Inventors: Masatoshi Yasutake, Takashi Kaito, Yoshiharu Shirakawabe, Itaru Kitajima