Patents by Inventor Massi Joe E. Kiani

Massi Joe E. Kiani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230058342
    Abstract: Various chairs are described herein for monitoring physiological parameters of a subject. In some implementations, a physiological monitoring chair includes a base portion configured to support a weight of the patient, a back portion configured to at least partially support a back of the patient, a leg portion configured to be positioned adjacent legs of the patient, a vibration motor, at least one physiological measurement device usable for determining said one or more physiological parameters of the patient, and a controller. The controller can be configured to instruct the vibration motor to cause vibration of at least a portion of the physiological monitoring chair based on said determined one or more physiological parameters of the patient. In some implementations, one or both of the back and leg portions are configured to be moved between an upright position and a reclined position.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 23, 2023
    Inventors: Massi Joe E. Kiani, Bilal Muhsin
  • Publication number: 20230047155
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: October 19, 2022
    Publication date: February 16, 2023
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20230047651
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 16, 2023
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20230052722
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: October 19, 2022
    Publication date: February 16, 2023
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20230039850
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 9, 2023
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20230033122
    Abstract: A patient monitoring hub can communicate bidirectionally with external devices such as a board-in-cable or a dongle. Medical data can be communicated from the patient monitoring hub to the external devices to cause the external devices to initiate actions. For example, an external device can perform calculations based on data received from the patient monitoring hub, or take other actions (for example, creating a new patient profile, resetting baseline values for algorithms, calibrating algorithms, etc.). The external device can also communicate display characteristics associated with its data to the monitoring hub. The monitoring hub can calculate a set of options for combined layouts corresponding to different external devices or parameters. A display option may be selected for arranging a display screen estate on the monitoring hub.
    Type: Application
    Filed: July 12, 2022
    Publication date: February 2, 2023
    Inventors: Bilal Muhsin, Massi Joe E. Kiani, Peter Scott Housel
  • Patent number: 11564642
    Abstract: An overdose of opioids can cause the user to stop breathing, resulting in death. A physiological monitoring system monitors respiration based on oxygen saturation readings from a fingertip pulse oximeter in communication with a smart mobile device and sends opioid monitoring information from the smart mobile device to an opioid overdose monitoring service. The opioid overdose monitoring service notifies a first set of contacts when the opioid monitoring information.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: January 31, 2023
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Keith Ward Indorf, Omar Ahmed, Jerome Novak, Walter M. Weber
  • Patent number: 11559227
    Abstract: A sensor cover according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor, such as a pulse oximetry sensor. Certain embodiments of the sensor cover reduce or eliminate false readings from the sensor when the sensor is not in use, for example, by blocking a light detecting component of a pulse oximeter sensor when the pulse oximeter sensor is active but not in use. Further, embodiments of the sensor cover can prevent damage to the sensor. Additionally, embodiments of the sensor cover prevent contamination of the sensor.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: January 24, 2023
    Assignee: Masimo Corporation
    Inventors: Abraham Mazda Kiani, Massi Joe E. Kiani
  • Publication number: 20230019476
    Abstract: Because reprocessing or refurbishing of physiological sensors reuses large portions of an existing sensor, the material costs for refurbishing sensors is significantly lower than the material costs for making an entirely new sensor. Typically, existing reprocessors replace only the adhesive portion of an adhesive physiological sensor and reuse the sensing components. However, re-using the sensing components can reduce the reliability of the refurbished sensor and/or reduce the number of sensors eligible for refurbishing due to out-of-specification sensor components. It is therefore desirable to provide a process for refurbishing physiological sensors that replaces the sensing components of the sensor. While sensing components are replaced, generally, sensor cable and/or patient monitor attachments are retained, resulting in cost savings over producing new sensors.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 19, 2023
    Inventors: Ammar Al-Ali, Yassir Abdul-Hafiz, Massi Joe E. Kiani
  • Publication number: 20230019452
    Abstract: A method of determining blood pressure measurements includes inflating a cuff, receiving an indication of pressure inside the cuff during inflation, determining a blood pressure based at least in part on the received indication, assigning a confidence level to the blood pressure, and determining whether the confidence level satisfies a threshold confidence level. Based at least on a determination that the confidence level satisfies a threshold confidence level, the method can include causing a display to display the blood pressure. Based at least on a determination that the confidence level does not satisfy a threshold confidence level, the method can include deflating the cuff, receiving an indication of pressure inside the cuff during deflation, determining another blood pressure, and causing a display to display a blood pressure.
    Type: Application
    Filed: March 3, 2022
    Publication date: January 19, 2023
    Inventors: Marcelo Lamego, Massi Joe E. Kiani, Ken Lam, Cristiano Dalvi, Hung The Vo
  • Patent number: 11540729
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: January 3, 2023
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana
  • Publication number: 20220392610
    Abstract: The present disclosure describes example systems, methods, and computer-readable medium for dynamic meal planning. A meal planning system can include one or more processors configured to obtain exercise data, meal data, health data, user preference data, and/or other data; determine a health score based at least in part on the exercise data and/or the meal data; generate a user-specific meal kit based at least in part on the exercise data, the meal data, the health data, the user preference data, the other data and/or the health score; and communicate an indication of the user-specific meal kit.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 8, 2022
    Inventor: Massi Joe E. Kiani
  • Patent number: 11515664
    Abstract: A magnetic connector has a plug core disposed around a plug contact set and a receptacle core disposed around a receptacle contact set. The plug core defines a generally elongated circular plug core edge. The receptacle core defines a generally elongated concentric-circular receptacle core edge. The receptacle core edge defines an air gap and the plug core defines an anchor configured to insert into the air gap. A coil is disposed around the receptacle core, and the coil, the plug core and the air gap define a magnetic circuit. The coil is electrically energized so as to form a magnetic field within an air gap, lock the anchor within the air gap and lock the plug contact set to the receptacle contact set accordingly.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: November 29, 2022
    Assignee: MASIMO CORPORATION
    Inventors: Massi Joe E. Kiani, Marcelo M. Lamego, Cristiano Dalvi, Hung The Vo
  • Publication number: 20220369940
    Abstract: A patient monitor capable of measuring microcirculation at a tissue site includes a light source, a beam splitter, a photodetector and a patient monitor. Light emitted from the light source is split into a reference arm and a sample arm. The light in the sample arm is directed at a tissue site, such as an eyelid. The reflected light from the tissue site is interfered with the light from the reference arm. The photodetector measures the interference of the light from both the sample arm and the reference arm. The patient monitor uses the measurements from the photodetector to calculate the oxygen saturation at the tissue site and monitor the microcirculation at the tissue site.
    Type: Application
    Filed: June 13, 2022
    Publication date: November 24, 2022
    Inventor: Massi Joe E. Kiani
  • Patent number: 11484230
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: November 1, 2022
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani
  • Patent number: 11484231
    Abstract: Because reprocessing or refurbishing of physiological sensors reuses large portions of an existing sensor, the material costs for refurbishing sensors is significantly lower than the material costs for making an entirely new sensor. Typically, existing reprocessors replace only the adhesive portion of an adhesive physiological sensor and reuse the sensing components. However, re-using the sensing components can reduce the reliability of the refurbished sensor and/or reduce the number of sensors eligible for refurbishing due to out-of-specification sensor components. It is therefore desirable to provide a process for refurbishing physiological sensors that replaces the sensing components of the sensor. While sensing components are replaced, generally, sensor cable and/or patient monitor attachments are retained, resulting in cost savings over producing new sensors.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: November 1, 2022
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Yassir Abdul-Hafiz, Massi Joe E. Kiani
  • Patent number: 11484229
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: November 1, 2022
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20220319651
    Abstract: The present disclosure provides a physiological monitoring system that includes at least one physiological sensor indicative of a physiological condition of a patient, the at least one sensor worn by a patient. Sensors can include one or more optical sensors configured to measure a physiological parameter, such as total hemoglobin, Sp2, methemoglobin, carboxyhemoglobin, and the like. A monitoring system can receive measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can generate an alert.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 6, 2022
    Inventors: Jeroen Poeze, Gregory A. Olsen, Marcelo Lamego, Massi Joe E. Kiani
  • Patent number: 11452449
    Abstract: A system for operating third party proprietary software on a medical monitoring device operating native proprietary software and a system for obtaining compatible third party proprietary software for operation on the monitoring device.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: September 27, 2022
    Assignee: Masimo Corporation
    Inventor: Massi Joe E. Kiani
  • Publication number: 20220296161
    Abstract: A system for critical time-based opioid monitoring system includes a physiological monitoring system having a sensor and a system processing board, a computing device configured to receive the parameters, an indication of normal conditions of a user under the circumstances at the time, such as, for example, a body transfer function or user physiological parameter model, to compare the monitored parameters to the normal conditions, and sending a notification when the monitored parameters deviate from the normal condition of a user. A system to monitor for an opioid event includes a physiological monitoring system comprising a sensor configured to monitor physiological parameters and a signal processing board, a computing device to detect an opioid overdose, and a device to stimulate a response when the computing device detects an opioid overdose event is occurring.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 22, 2022
    Inventors: Ammar Al-Ali, Omar Ahmed, Mohammad Usman, Kostantinos Michalopoulos, Bilal Muhsin, Jerome J. Novak, JR., Faisal Kashif, Massi Joe E. Kiani