Patents by Inventor Massimiliano Salsi

Massimiliano Salsi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942999
    Abstract: In an optical network having a terrestrial terminal and an open cable interface (OCI) connecting a submarine cable to a terrestrial cable, the OCI may include a filter positioned on an optical path between the terrestrial cable and the submarine cable and configured to pass first communication signals of a first frequency band, and filter out secondary signals of a second frequency band that does not overlap with the first frequency band. The secondary signals may be looped back to the terrestrial terminal. The terrestrial terminal may detect the looped back secondary signals, and in response, determine the presence of the OCI and that the supervisory signals were rerouted by the OCI.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: March 26, 2024
    Assignee: Google LLC
    Inventors: Massimiliano Salsi, Shuang Yin
  • Publication number: 20230324573
    Abstract: Systems and methods are provided for generating a model for detection of seismic events. In this regard, one or more processors may receive from one or more stations located along an underwater optical route, one or more time series of polarization states of a detected light signal during a time period. The one or more processors may transform the one or more time series of polarization states into one or more spectrums in a frequency domain. Seismic activity data for the time period may be received by the one or more processors, where the seismic activity data include one or more seismic events detected in a region at least partially overlapping the underwater optical route. The one or more processors then generate a model for detecting seismic events based on the one or more spectrums and the seismic activity data.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 12, 2023
    Inventors: Valey Kamalov, Mattia Cantono, Vijayanand Vusirikala, Massimiliano Salsi, Matthew Eldred Newland
  • Patent number: 11693137
    Abstract: Systems and methods are provided for generating a model for detection of seismic events. In this regard, one or more processors may receive from one or more stations located along an underwater optical route, one or more time series of polarization states of a detected light signal during a time period. The one or more processors may transform the one or more time series of polarization states into one or more spectrums in a frequency domain. Seismic activity data for the time period may be received by the one or more processors, where the seismic activity data include one or more seismic events detected in a region at least partially overlapping the underwater optical route. The one or more processors then generate a model for detecting seismic events based on the one or more spectrums and the seismic activity data.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: July 4, 2023
    Assignee: Google LLC
    Inventors: Valey Kamalov, Mattia Cantono, Vijayanand Vusirikala, Massimiliano Salsi, Matthew Eldred Newland
  • Publication number: 20230108236
    Abstract: An optical transport network (OTN) node including a plurality of optical circuit switches (OCSs), each OCS being a respective degree of the OTN node, at least two of the OCSs including an input port configured to be connected to a respective optical transport fiber outside of the OTN node, at least one first output port connected to a first switching layer, and at least one second output port connected to a second switching layer. The first and second switching layers have different levels of granularity, such as but not limited to a wavelength switched layer, a band switched layer or a fiber switched layer.
    Type: Application
    Filed: October 6, 2021
    Publication date: April 6, 2023
    Inventors: Rene Marcel Schmogrow, Mattia Cantono, Massimiliano Salsi
  • Publication number: 20230090500
    Abstract: In an optical network having a terrestrial terminal and an open cable interface (OCI) connecting a submarine cable to a terrestrial cable, the OCI may include a filter positioned on an optical path between the terrestrial cable and the submarine cable and configured to pass first communication signals of a first frequency band, and filter out secondary signals of a second frequency band that does not overlap with the first frequency band. The secondary signals may be looped back to the terrestrial terminal. The terrestrial terminal may detect the looped back secondary signals, and in response, determine the presence of the OCI and that the supervisory signals were rerouted by the OCI.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 23, 2023
    Inventors: Massimiliano Salsi, Shuang Yin
  • Patent number: 11539448
    Abstract: In an optical network having a terrestrial terminal and an open cable interface (OCI) connecting a submarine cable to a terrestrial cable, the OCI may include a filter positioned on an optical path between the terrestrial cable and the submarine cable and configured to pass first communication signals of a first frequency band, and filter out secondary signals of a second frequency band that does not overlap with the first frequency band. The secondary signals may be looped back to the terrestrial terminal. The terrestrial terminal may detect the looped back secondary signals, and in response, determine the presence of the OCI and that the supervisory signals were rerouted by the OCI.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: December 27, 2022
    Inventors: Massimiliano Salsi, Shuang Yin
  • Publication number: 20220321235
    Abstract: In an optical network having a terrestrial terminal and an open cable interface (OCI) connecting a submarine cable to a terrestrial cable, the OCI may include a filter positioned on an optical path between the terrestrial cable and the submarine cable and configured to pass first communication signals of a first frequency band, and filter out secondary signals of a second frequency band that does not overlap with the first frequency band. The secondary signals may be looped back to the terrestrial terminal. The terrestrial terminal may detect the looped back secondary signals, and in response, determine the presence of the OCI and that the supervisory signals were rerouted by the OCI.
    Type: Application
    Filed: April 1, 2021
    Publication date: October 6, 2022
    Applicant: Google LLC
    Inventors: Massimiliano Salsi, Shuang Yin
  • Publication number: 20220291404
    Abstract: Systems and methods are provided for generating a model for detection of seismic events. In this regard, one or more processors may receive from one or more stations located along an underwater optical route, one or more time series of polarization states of a detected light signal during a time period. The one or more processors may transform the one or more time series of polarization states into one or more spectrums in a frequency domain. Seismic activity data for the time period may be received by the one or more processors, where the seismic activity data include one or more seismic events detected in a region at least partially overlapping the underwater optical route. The one or more processors then generate a model for detecting seismic events based on the one or more spectrums and the seismic activity data.
    Type: Application
    Filed: May 25, 2022
    Publication date: September 15, 2022
    Inventors: Valey Kamalov, Mattia Cantono, Vijayanand Vusirikala, Massimiliano Salsi, Matthew Eldred Newland
  • Patent number: 11385365
    Abstract: Systems and methods are provided for generating a model for detection of seismic events. In this regard, one or more processors may receive from one or more stations located along an underwater optical route, one or more time series of polarization states of a detected light signal during a time period. The one or more processors may transform the one or more time series of polarization states into one or more spectrums in a frequency domain. Seismic activity data for the time period may be received by the one or more processors, where the seismic activity data include one or more seismic events detected in a region at least partially overlapping the underwater optical route. The one or more processors then generate a model for detecting seismic events based on the one or more spectrums and the seismic activity data.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: July 12, 2022
    Assignee: Google LLC
    Inventors: Valey Kamalov, Mattia Cantono, Vijayanand Vusirikala, Massimiliano Salsi, Matthew Eldred Newland
  • Publication number: 20220116692
    Abstract: The present disclosure describes a network including two levels of switching: a first level including wavelength selective switching via a first type of switching module, and a second level including fiber level switching via a second type of switching module. The two levels of switching allow for maintaining wavelength selective switching between transmission directions while introducing fiber selective switching between network degrees of the same transmission direction. The first type of switching module is configured to transmit and receive optical signals having a first set of wavelengths at a first network degree at a first direction in a node of a network. The second type of switching module is configured to transmit and receive the optical signals from the first type of switching module and route the optical signals at the first network degree to a second network degree in a second direction.
    Type: Application
    Filed: October 9, 2020
    Publication date: April 14, 2022
    Inventors: Rene Schmogrow, Massimiliano Salsi, Matthew Eldred Newland, Mattia Cantono
  • Publication number: 20210255344
    Abstract: Systems and methods are provided for generating a model for detection of seismic events. In this regard, one or more processors may receive from one or more stations located along an underwater optical route, one or more time series of polarization states of a detected light signal during a time period. The one or more processors may transform the one or more time series of polarization states into one or more spectrums in a frequency domain. Seismic activity data for the time period may be received by the one or more processors, where the seismic activity data include one or more seismic events detected in a region at least partially overlapping the underwater optical route. The one or more processors then generate a model for detecting seismic events based on the one or more spectrums and the seismic activity data.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 19, 2021
    Inventors: Valey Kamalov, Mattia Cantono, Vijayanand Vusirikala, Massimiliano Salsi, Matthew Eldred Newland
  • Patent number: 10797791
    Abstract: A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: October 6, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Massimiliano Salsi, Domenico Di Mola, Gert Grammel
  • Publication number: 20200127734
    Abstract: A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Massimiliano SALSI, Domenico DI MOLA, Gert GRAMMEL
  • Patent number: 10623094
    Abstract: In some embodiments, an apparatus includes an optical transceiver configured to be operatively coupled to a network. The optical transceiver includes a photo diode and a processor configured to be operatively coupled to the photo diode. The photo diode is configured to measure a receiver optical power (ROP) value and send the ROP value to the processor. The processor is configured to measure a bit error rate (BER) value of a digital modulated signal at an input port of the optical transceiver. The processor is also configured to determine an estimated optical signal noise ratio (OSNR) value at the input port of the optical transceiver based on the ROP value and the BER value. The processor is configured to send a signal indicating the estimated OSNR value such that a planned route is selected for sending data signals through within the optical transceiver based on the estimated OSNR value.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 14, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Qiang Wang, Massimiliano Salsi
  • Patent number: 10547379
    Abstract: A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: January 28, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Massimiliano Salsi, Domenico Di Mola, Gert Grammel
  • Patent number: 10547333
    Abstract: In some embodiments, an apparatus includes an optical transceiver which includes a rate-adaptive forward error correction (FEC) encoder and a rate-adaptive FEC decoder. The rate-adaptive FEC encoder is configured to adjust a number of a set of known symbols associated with a codeword to achieve rate adaption. A length of the codeword is fixed. The rate-adaptive FEC encoder is configured to generate the codeword based on (1) a set of information symbols including the set of known symbols and a set of data symbols, and (2) a fixed number of a set of parity symbols generated using information symbols. The rate-adaptive FEC decoder is configured to receive a set of reliability values associated with a channel word, and expand the set of reliability values to produce an expanded set of reliability values. The rate-adaptive FEC decoder is further configured to decode the expanded set of reliability values.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: January 28, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Murat Arabaci, Marianna Pepe, Philip A. Thomas, David Ofelt, Massimiliano Salsi
  • Patent number: 10439731
    Abstract: In some embodiments, an apparatus includes a processor configured to receive a set of digital samples associated with a set of optical signals received at a coherent optical receiver. The set of digital samples is associated with a set of optical channels. Each optical channel from the set of optical channels is spaced from at least one adjacent optical channel from the plurality of optical channels. The processor is configured to calculate, for each optical channel from the set of optical channels, a spacing between that optical channel and at least one adjacent optical channel from the set of optical channels based on digital signal processing of the set of digital samples. The processor is configured to send a signal indicating, for each optical channel from the set of optical channels, the spacing between that optical channel and the at least one adjacent optical channel.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 8, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: Massimiliano Salsi, Xiaoxia Wu
  • Patent number: 10284323
    Abstract: A wavelength division multiplexing (WDM) transceiver module comprising an optical port and an optical modulator is disclosed herein. The optical port includes a data transmit and receive optical fiber connector and a laser source-in optical fiber connector. The laser source-in optical fiber connector is configured to couple to a laser source external to the WDM transceiver module, and provide polarization alignment for a polarization-maintaining fiber. The optical modulator is configured to receive a laser output from the external laser source via the polarization-maintaining fiber and modulate the laser output based on analog electrical signals generated by a digital signal processor. The WDM transceiver module may not including an onboard laser source.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: May 7, 2019
    Assignee: Juniper Networks, Inc.
    Inventor: Massimiliano Salsi
  • Patent number: 10211917
    Abstract: In some embodiments, an apparatus includes an optical transceiver configured to be operatively coupled to a network. The optical transceiver includes a photo diode and a processor configured to be operatively coupled to the photo diode. The photo diode is configured to measure a receiver optical power (ROP) value and send the ROP value to the processor. The processor is configured to measure a bit error rate (BER) value of a digital modulated signal at an input port of the optical transceiver. The processor is also configured to determine an estimated optical signal noise ratio (OSNR) value at the input port of the optical transceiver based on the ROP value and the BER value. The processor is configured to send a signal indicating the estimated OSNR value such that a planned route is selected for sending data signals through within the optical transceiver based on the estimated OSNR value.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 19, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: Qiang Wang, Massimiliano Salsi
  • Publication number: 20190036616
    Abstract: In some embodiments, an apparatus includes a processor configured to receive a set of digital samples associated with a set of optical signals received at a coherent optical receiver. The set of digital samples is associated with a set of optical channels. Each optical channel from the set of optical channels is spaced from at least one adjacent optical channel from the plurality of optical channels. The processor is configured to calculate, for each optical channel from the set of optical channels, a spacing between that optical channel and at least one adjacent optical channel from the set of optical channels based on digital signal processing of the set of digital samples. The processor is configured to send a signal indicating, for each optical channel from the set of optical channels, the spacing between that optical channel and the at least one adjacent optical channel.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 31, 2019
    Applicant: Juniper Networks, Inc.
    Inventors: Massimiliano SALSI, Xiaoxia WU