Patents by Inventor Mathew Haggard

Mathew Haggard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190380825
    Abstract: The techniques of this disclosure generally relate to modular stent device and method of deploying the same. The method includes introducing a delivery system including the modular stent device via supra aortic access. The delivery system is advanced into the ascending aorta. Once positioned, the modular stent device is deployed from the delivery system such that an artery leg of the modular stent device engages the brachiocephalic artery and a bypass gate engages the aorta, wherein the artery leg partially collapses the bypass gate. The artery leg has a greater radial force than the bypass gate such that the artery leg remains un-collapsed and opened. Accordingly, blood flow through the artery leg and perfusion of the brachiocephalic artery and preservation of blood flow to cerebral territories including the brain is insured.
    Type: Application
    Filed: March 28, 2019
    Publication date: December 19, 2019
    Inventors: Keith Perkins, Zachary Borglin, Mathew A. Haggard
  • Patent number: 10010403
    Abstract: A stent-graft prosthesis includes a generally tubular outer PTFE layer, a generally tubular helical stent, a generally tubular inner PTFE layer, and a suture or fabric support strip. The outer PTFE layer defines an outer layer lumen. The helical stent is disposed within the outer layer lumen and defines a stent lumen. The inner PTFE layer is disposed within the stent lumen and defines an inner layer lumen. The suture includes a suture first end coupled to a stent first end and a suture second end coupled to a stent second end, with the suture disposed between the outer PTFE layer and the inner PTFE layer. Alternatively, the fabric support strip is disposed between the outer and inner PTFE layers. The suture or fabric support strip may include a plurality of sutures or fabric support strips and may be spaced equally around a circumference of the inner PTFE layer.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: July 3, 2018
    Assignee: Medtronic Vascular, Inc.
    Inventors: Joseph Marrocco, Mathew Haggard, Keith Perkins
  • Publication number: 20170296325
    Abstract: A stent-graft prosthesis includes a generally tubular outer PTFE layer, a generally tubular helical stent, a generally tubular inner PTFE layer, and a suture or fabric support strip. The outer PTFE layer defines an outer layer lumen. The helical stent is disposed within the outer layer lumen and defines a stent lumen. The inner PTFE layer is disposed within the stent lumen and defines an inner layer lumen. The suture includes a suture first end coupled to a stent first end and a suture second end coupled to a stent second end, with the suture disposed between the outer PTFE layer and the inner PTFE layer. Alternatively, the fabric support strip is disposed between the outer and inner PTFE layers. The suture or fabric support strip may include a plurality of sutures or fabric support strips and may be spaced equally around a circumference of the inner PTFE layer.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 19, 2017
    Inventors: Joseph Marrocco, Mathew Haggard, Keith Perkins
  • Patent number: 9393140
    Abstract: A reconfigurable delivery system is disclosed having a multi-lumen delivery catheter configuration that permits the delivery and staged release of a self-expanding main vessel stent-graft and a delivery sheath configuration that permits the introduction of various medical devices for the delivery and implantation of various branch vessel stent-grafts that are to be mated with the main vessel stent-graft. A method is disclosed wherein the delivery system is first used in the multi-lumen delivery catheter configuration to deliver and release a main vessel stent-graft that is configured for placement in the abdominal aorta for treatment of short-neck infrarenal, juxtarenal, and/or suprarenal aneurysms and then used in the delivery sheath configuration to facilitate the delivery of branch vessel stent-grafts that are configured to extend from the main vessel stent-graft into a respective renal artery.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 19, 2016
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jeffery Argentine, Mathew Haggard, Jason Maggard, Emilie Simmons
  • Publication number: 20130289691
    Abstract: A reconfigurable delivery system is disclosed having a multi-lumen delivery catheter configuration that permits the delivery and staged release of a self-expanding main vessel stent-graft and a delivery sheath configuration that permits the introduction of various medical devices for the delivery and implantation of various branch vessel stent-grafts that are to be mated with the main vessel stent-graft. A method is disclosed wherein the delivery system is first used in the multi-lumen delivery catheter configuration to deliver and release a main vessel stent-graft that is configured for placement in the abdominal aorta for treatment of short-neck infrarenal, juxtarenal, and/or suprarenal aneurysms and then used in the delivery sheath configuration to facilitate the delivery of branch vessel stent-grafts that are configured to extend from the main vessel stent-graft into a respective renal artery.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: MEDTRONIC VASCULAR, INC.
    Inventors: Jeffrey Argentine, Mathew Haggard, Jason Maggard, Emilie Simmons
  • Publication number: 20130289692
    Abstract: A reconfigurable delivery system is disclosed having a multi-lumen delivery catheter configuration that permits the delivery and staged release of a self-expanding main vessel stent-graft and a delivery sheath configuration that permits the introduction of various medical devices for the delivery and implantation of various branch vessel stent-grafts that are to be mated with the main vessel stent-graft. A method is disclosed wherein the delivery system is first used in the multi-lumen delivery catheter configuration to deliver and release a main vessel stent-graft that is configured for placement in the abdominal aorta for treatment of short-neck infrarenal, juxtarenal, and/or suprarenal aneurysms and then used in the delivery sheath configuration to facilitate the delivery of branch vessel stent-grafts that are configured to extend from the main vessel stent-graft into a respective renal artery.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: MEDTRONIC VASCULAR, INC.
    Inventors: Jeffery Argentine, Mathew Haggard, Jason Maggard, Emilie Simmons
  • Publication number: 20130289696
    Abstract: A reconfigurable delivery system is disclosed having a multi-lumen delivery catheter configuration that permits the delivery and staged release of a self-expanding main vessel stent-graft and a delivery sheath configuration that permits the introduction of various medical devices for the delivery and implantation of various branch vessel stent-grafts that are to be mated with the main vessel stent-graft. A method is disclosed wherein the delivery system is first used in the multi-lumen delivery catheter configuration to deliver and release a main vessel stent-graft that is configured for placement in the abdominal aorta for treatment of short-neck infrarenal, juxtarenal, and/or suprarenal aneurysms and then used in the delivery sheath configuration to facilitate the delivery of branch vessel stent-grafts that are configured to extend from the main vessel stent-graft into a respective renal artery.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: MEDTRONIC VASCULAR, INC.
    Inventors: Jason Maggard, Jeffery Argentine, Mathew Haggard, Meghan Pearson, Emilie Simmons