Patents by Inventor Matthew C. Miller

Matthew C. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190059933
    Abstract: An ultrasonic surgical instrument includes a body, an ultrasonic supported by the body, a shaft extending distally from the body and defining a shaft axis, a waveguide extending distally through the shaft, and an end effector arranged at a distal end of the shaft. The end effector includes an ultrasonic blade coupled to a distal end of the waveguide and having a primary blade treatment surface configured to treat tissue, and a clamp arm coupled to the distal end of the shaft. The shaft and the waveguide are selectively rotatable relative to one another about the shaft axis through a predefined range of angular motion between an assembly state and an operational state. In the assembly state, the clamp arm and the primary blade treatment surface are rotationally offset from one another. In the operational state, the clamp arm and the primary blade treatment surface are rotationally aligned.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: Matthew C. Miller, Sean P. Conlon, Michael E. Boehm, Richard W. Flaker, Bryce Hansen, Rafael J. Ruiz Ortiz
  • Patent number: 10201382
    Abstract: A surgical generator is disclosed including an ultrasonic generator module to provide at an ultrasonic drive signal for driving an ultrasonic surgical device and an electrosurgical generator module to provice an electrosurgical drive signal for driving an electrosurgical device. At least one of providing the ultrasonic drive signal or providing the electrosurgical drive signal includes recalling a waveform sample from a look-up table (LUT), modifying the waveform sample to generate a modified waveform based on voltage and current feedback information to pre-distort the waveform sample on a dynamic ongoing basis, indexing each stored voltage and current feedback data pair based on a corresponding LUT sample that was output when the voltage and current feedback data pair was acquired, synchronizing the LUT sample and the voltage and current feedback data pair to correct timing and stability of the pre-distorted waveform sample, and providing the modified waveform to an output stage.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: February 12, 2019
    Assignee: Ethicon LLC
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Joseph A. Brotz, John E. Hein
  • Patent number: 10182805
    Abstract: Various methods and devices are provided for allowing multiple surgical instruments to be inserted into sealing elements of a single surgical access device. The sealing elements can be movable along predefined pathways within the device to allow surgical instruments inserted through the sealing elements to be moved laterally, rotationally, angularly, and vertically relative to a central longitudinal axis of the device for ease of manipulation within a patient's body while maintaining insufflation.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: January 22, 2019
    Assignee: Ethicon LLC
    Inventors: Mark S. Ortiz, David T. Martin, Matthew C. Miller, Mark J. Reese, Wells D. Haberstich, Carl Shurtleff, Charles J. Scheib, Frederick E. Shelton, IV, Jerome R. Morgan, Daniel H. Duke, Daniel J. Mumaw, Gregory W. Johnson, Kevin L. Houser
  • Publication number: 20190008543
    Abstract: A variety of methods for managing a re-usable ultrasonic medical device may include a medical device control module capable of receiving functional data from a user assembled or reassembled ultrasonic medical device, and notifying the user if a value of the functional data lies within an acceptance range. If the value of the functional data does not lie within the acceptance range, the control module may prompt a user to reassemble the device or to clean or replace one or more components thereof. The functional data may relate to a clamp force of a jaw assembly, an impedance or resonant frequency value of an ultrasonic blade, or a mechanical displacement value of one or more moving components of the device.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 10, 2019
    Inventors: Patrick J. Scoggins, Tylor C. Muhlenkamp, David C. Groene, William D. Dannaher, Benjamin D. Dickerson, Phillip H. Clauda, Rafael J. Ruiz Ortiz, Matthew C. Miller, Kevin A. Bash
  • Patent number: 10143513
    Abstract: A surgical instrument is separable into a transducer unit and a lower body portion. The lower body portion includes a waveguide and a casing. The transducer unit includes a transducer and a geared mechanism operable to couple the transducer to the waveguide. In some versions the geared mechanism includes bevel gears coupled to a rack and pinion such that linear motion may be used to rotatably couple a transducer to a waveguide. The rack gear may further include a handle extending out of the transducer unit casing to be actuatable by a user. The rack gear may also be flexible or rigid. In other versions, the bevel gears may be coupled to a threaded shaft that is operable to translate the transducer into the waveguide to form an interference fit. The transducer unit may also include a slide lock mechanism to couple to the casing of the lower body portion.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: December 4, 2018
    Assignee: Ethicon LLC
    Inventors: Kevin L. Houser, Matthew C. Miller, Cory G. Kimball, John W. Willis, Timothy G. Dietz, Foster B. Stulen
  • Patent number: 10111698
    Abstract: An apparatus comprises a body assembly, a shaft, an end effector, a rotation input feature, and a locking feature. The shaft extends distally from the body assembly and defines a longitudinal axis. The end effector is positioned at the distal end of the shaft. The rotation input feature comprises a proximal end and a distal end. The rotation input feature is configured to rotate one or both of the shaft assembly or the end effector about the longitudinal axis. The locking feature is configured to transition between a locked state and an unlocked state. The locking feature is configured to prevent rotation of the one or both of the shaft assembly when the locking feature is in the locked state. The locking feature is configured to permit rotation of the one or both of the shaft assembly when the locking feature is in the unlocked state.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: October 30, 2018
    Assignee: Ethicon LLC
    Inventors: Charles J. Scheib, Benjamin D. Dickerson, Matthew C. Miller, Geoffrey S. Strobl, Jeffrey S. Swayze, David T. Martin, Daniel J. Mumaw
  • Publication number: 20180280083
    Abstract: A surgical tool is disclosed. The surgical tool has a tool mounting portion having a tool mounting housing, a tool mounting plate, and a coupler to couple a shaft assembly having an articulation section to the tool mounting portion. An articulation mechanism is located within the tool mounting portion and is configured to receive a proximal end of the shaft assembly to articulate the articulation section of the shaft assembly. The articulation mechanism has a cam mechanism operative to articulate the articulation section of the shaft assembly. An interface mechanically and electrically couples the tool mounting portion to a manipulator.
    Type: Application
    Filed: March 21, 2018
    Publication date: October 4, 2018
    Inventors: Shailendra K. Parihar, Matthew C. Miller, Barry C. Worrell
  • Publication number: 20180280076
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 4, 2018
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Patent number: 10058346
    Abstract: An ultrasonic instrument comprises a handle assembly or other kind of body configured to receive an ultrasonic transducer, a shaft assembly having an acoustic waveguide and an ultrasonic blade, and a removable clamp arm. The ultrasonic blade is in acoustic communication with the acoustic waveguide such that the ultrasonic transducer is operable to drive the ultrasonic blade to vibrate ultrasonically via the acoustic waveguide. The clamp arm is configured to selectively couple with and decouple from the shaft assembly and/or handle assembly of the ultrasonic instrument. The clamp arm may include a coupler or other coupling feature configured to selectively couple the clamp arm with the shaft assembly and/or the handle assembly. The ultrasonic instrument may further comprise a guidance system configured to position and/or orient the clamp arm relative to the ultrasonic instrument.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: August 28, 2018
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, Daniel W. Price, Foster B. Stulen, Matthew C. Miller
  • Publication number: 20180206881
    Abstract: A handle assembly for a handheld surgical instrument is disclosed. The handle assembly may include a body portion extending parallel to a longitudinal axis, a fixed handle interfaced with the body portion and extending downwardly from the body portion and away from the longitudinal axis, and a detachable handle portion. The fixed handle may define a proximal contact surface. The detachable handle portion may define an internal surface configured to interface with the proximal contact surface of the fixed handle and comprise at least one attachment feature to removably couple the detachable handle portion to the fixed handle.
    Type: Application
    Filed: December 11, 2017
    Publication date: July 26, 2018
    Inventors: Daniel W. Price, Galen C. Robertson, Cory G. Kimball, Scott A. Woodruff, Matthew C. Miller, Kip M. Rupp, Carrie I. Hensley, Jane A. Sheetz, Carl J. Draginoff, Jr.
  • Patent number: 10022567
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. In accordance with the method, a generator is configured to generate at least one time varying electrical signal having a resonant frequency, monitor the resonant frequency of the at least one electrical signal, compare the resonant frequency to a threshold frequency, and trigger a first response of the generator when the resonant frequency crosses the threshold frequency.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: July 17, 2018
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, Jr.
  • Patent number: 10022568
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. In accordance with the method, a generator is configured to generate at least one time varying electrical signal having a resonant frequency, monitor the resonant frequency of the at least one electrical signal, calculate a frequency slope between frequency data points of the time varying electrical signal, where the frequency slope is the change in resonant frequency over time, compare the frequency slope to a threshold frequency slope, and trigger a first response of the generator when the frequency slope crosses the threshold frequency slope.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: July 17, 2018
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, Jr.
  • Publication number: 20180168714
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: June 21, 2018
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Joseph A. Brotz, John E. Hein
  • Publication number: 20180161059
    Abstract: A surgical instrument includes an end effector, a shaft assembly, and a torque wrench integrally connected with the shaft assembly. The shaft assembly has an acoustic waveguide extending therethrough and the end effector projects distally from the shaft assembly. The acoustic waveguide has a proximal end portion configured to rotatably couple with an ultrasonic transducer assembly. The torque wrench is configured to transmit torque applied to the acoustic waveguide up to a predetermined torque. A portion of the torque wrench is configured to deflect upon receipt of torque greater than the predetermined torque. Accordingly, the portion of the torque wrench slips relative to the acoustic waveguide for limiting coupling of the acoustic waveguide to the ultrasonic transducer assembly to the predetermined torque.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Jason R. Lesko, Matthew C. Miller
  • Patent number: 9980769
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: May 29, 2018
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Publication number: 20180132888
    Abstract: A surgical instrument, has an end effector that includes an ultrasonic blade, and a clamp arm that moves relative to the ultrasonic blade from an opened position toward an intermediate position and a closed position. The clamp arm is offset from the ultrasonic blade to define a predetermined gap in the intermediate position between the opened position and the closed position. A clamp arm actuator connects to the clamp arm and moves from an opened configuration to a closed configuration to direct the clamp arm from the opened position toward the intermediate position and the closed position. A spacer connects with the clamp arm to inhibit movement of the clamp arm from the intermediate position toward the closed position for maintaining the predetermined gap between the clamp arm and the ultrasonic blade.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 17, 2018
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Joseph Dennis, Geni M. Giannotti, Bryce L. Heitman, Timothy S. Holland, Joseph E. Hollo, Andrew Kolpitcke, Amy M. Krumm, Jason R. Lesko, Matthew C. Miller, David A. Monroe, Ion V. Nicolaescu, Rafael J. Ruiz Ortiz, Matthew S. Schneider, Richard C. Smith, Shawn C. Snyder, Sarah A. Worthington, Monica L. Zeckel, Fajian Zhang
  • Patent number: 9962182
    Abstract: In various embodiments, a surgical instrument for operation in an aqueous environment is provided. In at least one embodiment, the surgical instrument may include a hollow sheath and a blade disposed at least partially within the sheath. Coupled to the blade may be at least one ultrasonic transducer, which, in turn, may be coupled to a drive system. The drive system may be configured to deliver gross axial motions to the blade such that the blade translates with respect to the hollow sheath when the drive system is activated. Accordingly, tissue may be cut by the blade with gross axial movement of the blade and/or ultrasonic vibrational motion provided by the ultrasonic transducer(s). In alternative embodiments, the blade may be rotated axially instead of translated with respect to the hollow sheath.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: May 8, 2018
    Assignee: Ethicon LLC
    Inventors: Timothy G. Dietz, Gregory W. Johnson, Sean P. Conlon, Daniel J. Mumaw, Jerome R. Morgan, William D. Dannaher, Omar J. Vakharia, Richard W. Timm, Matthew C. Miller, Galen C. Robertson
  • Publication number: 20180116706
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: May 3, 2018
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Patent number: 9925003
    Abstract: A surgical tool is disclosed. The surgical tool has a tool mounting portion having a tool mounting housing, a tool mounting plate, and a coupler to couple a shaft assembly having an articulation section to the tool mounting portion. An articulation mechanism is located within the tool mounting portion and is configured to receive a proximal end of the shaft assembly to articulate the articulation section of the shaft assembly. The articulation mechanism has a cam mechanism operative to articulate the articulation section of the shaft assembly. An interface mechanically and electrically couples the tool mounting portion to a manipulator.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 27, 2018
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Shailendra K. Parihar, Matthew C. Miller, Barry C. Worrell
  • Patent number: 9918730
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: March 20, 2018
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner