Patents by Inventor Matthew D. Weed

Matthew D. Weed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220291353
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light along a scan pattern contained within an adjustable field of regard. The scanner includes a first scanning mirror configured to scan the portion of the emitted pulses of light substantially parallel to a first scan axis to produce multiple scan lines of the scan pattern. The scanner also includes a second scanning mirror configured to distribute the scan lines along a second scan axis, where the scan lines are distributed within the adjustable field of regard according to an adjustable second-axis scan profile that includes a minimum scan angle along the second scan axis, a maximum scan angle along the second scan axis, and a scan-line distribution.
    Type: Application
    Filed: May 25, 2022
    Publication date: September 15, 2022
    Inventors: Scott R. Campbell, Matthew D. Weed, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Patent number: 11442150
    Abstract: In one embodiment, a lidar system includes a light source configured to emit a pulse of light and a scanner configured to direct the emitted pulse of light into a field of regard of the lidar system. The lidar system also includes a receiver configured to receive a portion of the emitted pulse of light scattered by a target located a distance from the lidar system. The receiver includes a digital micromirror device (DMD) that includes a two-dimensional array of electrically addressable micromirrors, where a portion of the micromirrors are configured to be set to an active-on state to direct the received pulse of light to a detector array. The detector array includes a two-dimensional array of detector elements, where the detector array is configured to detect the received pulse of light and produce an electrical signal corresponding to the received pulse of light.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: September 13, 2022
    Assignee: Luminar, LLC
    Inventors: Joseph G. LaChapelle, Philip W. Smith, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 11415677
    Abstract: To compensate for the uneven distribution of data points around the periphery of a vehicle in a lidar system, a light source transmits light pulses at a variable pulse rate according to the orientation of the light pulses with respect to the lidar system. A controller may communicate with a scanner in the lidar system that provides the orientations of the light pulses to the controller. The controller may then provide a control signal to the light source adjusting the pulse rate based on the orientations of the light pulses. For example, the pulse rate may be slower near the front of the lidar system and faster near the periphery. In another example, the pulse rate may be faster near the front of the lidar system and slower near the periphery.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: August 16, 2022
    Assignee: Luminar, LLC
    Inventors: Matthew D. Weed, Scott R. Campbell, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Patent number: 11415675
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The field of regard contains all or part of a target located a distance from the lidar system that is less than or equal to a maximum range of the lidar system, and one or more of the emitted pulses of light are scattered by the target. The lidar system also includes a receiver configured to detect at least a portion of the pulses of light scattered by the target. The lidar system further includes a processor configured to determine the distance from the lidar system to the target based at least in part on a round-trip time of flight for an emitted pulse of light.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: August 16, 2022
    Assignee: Luminar, LLC
    Inventors: Austin K. Russell, Matthew D. Weed, Liam J. McGregor, Jason M. Eichenholz
  • Patent number: 11378666
    Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: July 5, 2022
    Assignee: Luminar, LLC
    Inventors: Scott R. Campbell, Lane A. Martin, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 11353559
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light along a scan pattern contained within an adjustable field of regard. The scanner includes a first scanning mirror configured to scan the portion of the emitted pulses of light substantially parallel to a first scan axis to produce multiple scan lines of the scan pattern, where each scan line is oriented substantially parallel to the first scan axis. The scanner also includes a second scanning mirror configured to distribute the scan lines along a second scan axis that is substantially orthogonal to the first scan axis, where the scan lines are distributed within the adjustable field of regard according to an adjustable second-axis scan profile.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: June 7, 2022
    Assignee: Luminar, LLC
    Inventors: Scott R. Campbell, Matthew D. Weed, Lane A. Martin, Jason M. Eichenholz, Austin K. Russell
  • Publication number: 20220082702
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan the emitted pulses of light along a high-resolution scan pattern located within a field of regard of the lidar system. The scanner includes one or more scan mirrors configured to (i) scan the emitted pulses of light along a first scan axis to produce multiple scan lines of the high-resolution scan pattern, where each scan line is associated with multiple pixels, each pixel corresponding to one of the emitted pulses of light and (ii) distribute the scan lines of the high-resolution scan pattern along a second scan axis. The high-resolution scan pattern includes one or more of: interlaced scan lines and interlaced pixels.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: Istvan Peter Burbank, Matthew D. Weed, Jason Paul Wojack, Jason M. Eichenholz, Dmytro Trofymov
  • Patent number: 11194048
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan the emitted pulses of light along a high-resolution scan pattern located within a field of regard of the lidar system. The scanner includes one or more scan mirrors configured to (i) scan the emitted pulses of light along a first scan axis to produce multiple scan lines of the high-resolution scan pattern, where each scan line is associated with multiple pixels, each pixel corresponding to one of the emitted pulses of light and (ii) distribute the scan lines of the high-resolution scan pattern along a second scan axis. The high-resolution scan pattern includes one or more of: interlaced scan lines and interlaced pixels.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: December 7, 2021
    Assignee: Luminar, LLC
    Inventors: Istvan Peter Burbank, Matthew D. Weed, Jason Paul Wojack, Jason M. Eichenholz, Dmytro Trofymov
  • Publication number: 20210356600
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan the emitted pulses of light along a high-resolution scan pattern located within a field of regard of the lidar system. The scanner includes one or more scan mirrors configured to (i) scan the emitted pulses of light along a first scan axis to produce multiple scan lines of the high-resolution scan pattern, where each scan line is associated with multiple pixels, each pixel corresponding to one of the emitted pulses of light and (ii) distribute the scan lines of the high-resolution scan pattern along a second scan axis. The high-resolution scan pattern includes one or more of: interlaced scan lines and interlaced pixels.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 18, 2021
    Inventors: Istvan Peter Burbank, Matthew D. Weed, Jason Paul Wojack, Jason M. Eichenholz, Dmytro Trofymov
  • Publication number: 20210356601
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan the emitted pulses of light along a high-resolution scan pattern located within a field of regard of the lidar system. The scanner includes one or more scan mirrors configured to (i) scan the emitted pulses of light along a first scan axis to produce multiple scan lines of the high-resolution scan pattern, where each scan line is associated with multiple pixels, each pixel corresponding to one of the emitted pulses of light and (ii) distribute the scan lines along a second scan axis to produce the high-resolution scan pattern, where the high-resolution scan pattern includes locally retraced scan lines.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 18, 2021
    Inventors: Istvan Peter Burbank, Matthew D. Weed, Jason Paul Wojack, Jason M. Eichenholz
  • Patent number: 11022688
    Abstract: A lidar system operating in a vehicle comprising a first eye configured to scan a first field of regard and a second eye configured to scan a second field of regard. Each of the first eye and the second eye includes a respective optical element configured to output a beam of light, a respective scan mirror configured to scan the beam of light along a vertical dimension of the respective field of regard, and a respective receiver configured to detect scattered light from the beam of light. The field of regard of the lidar system includes the first field of regard and the second field of regard, combined along a horizontal dimension of the first field of regard and the second field of regard.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: June 1, 2021
    Assignee: Luminar, LLC
    Inventors: Jason M. Eichenholz, Scott R. Campbell, Matthew D. Weed, Lane A. Martin
  • Patent number: 10976417
    Abstract: A lidar system comprises a light source configured to emit pulses of light, a scanner configured to direct the pulses of light along a scan direction, where each of the pulses of light illuminates a respective field of view of the light source, and a receiver configured to detect the pulses of light scattered by remote targets. The receiver includes a low-gain detector associated with a low gain and a high-gain detector associated with a high gain. The low-gain detector is positioned so that a first scattered pulse of light that returns from a first target, located closer to the receiver than a second target, is detected primarily by the low-gain detector, and a second scattered pulse of light that returns from the second target is detected primarily by the high-gain detector.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: April 13, 2021
    Assignee: Luminar Holdco, LLC
    Inventors: Joseph G. LaChapelle, Scott R. Campbell, Jason M. Eichenholz, Matthew D. Weed
  • Publication number: 20200284906
    Abstract: A lidar system includes one or more light sources configured to generate a first beam of light and a second beam of light, a scanner configured to scan the first and second beams of light across a field of regard of the lidar system, and a receiver configured to detect the first beam of light and the second beam of light scattered by one or more remote targets. The scanner includes a rotatable polygon mirror that includes multiple reflective surfaces angularly offset from one another along a periphery of the polygon mirror, the reflective surfaces configured to reflect the first and second beams of light to produce a series of scan lines as the polygon mirror rotates. The scanner also includes a pivotable scan mirror configured to (i) reflect the first and second beams of light and (ii) pivot to distribute the scan lines across the field of regard.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 10, 2020
    Inventors: Jason M. Eichenholz, Scott R. Campbell, John E. McWhirter, Matthew D. Weed, Lane A. Martin
  • Publication number: 20200256964
    Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Scott R. Campbell, Lane A. Martin, Matthew D. Weed, Jason M. Eichenholz
  • Publication number: 20200256960
    Abstract: In one embodiment, a lidar system includes a light source configured to emit a pulse of light and a scanner configured to direct the emitted pulse of light into a field of regard of the lidar system. The lidar system also includes a receiver configured to receive a portion of the emitted pulse of light scattered by a target located a distance from the lidar system. The receiver includes a digital micromirror device (DMD) that includes a two-dimensional array of electrically addressable micromirrors, where a portion of the micromirrors are configured to be set to an active-on state to direct the received pulse of light to a detector array. The detector array includes a two-dimensional array of detector elements, where the detector array is configured to detect the received pulse of light and produce an electrical signal corresponding to the received pulse of light.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 13, 2020
    Inventors: Joseph G. LaChapelle, Philip W. Smith, Matthew D. Weed, Jason M. Eichenholz
  • Publication number: 20200217960
    Abstract: A machine vision system comprises a camera configured to generate one or more images of a field of regard of the camera, a lidar system, and a processor. The lidar system includes a laser configured to emit light, where the emitted light is directed toward a region within the field of regard of the camera and a receiver configured to detect light returned from the emitted light. The processor is configured to receive an indication of a location based on the returned light and determine, based on the one or more images generated by the camera, whether the indication of the location is associated with a spurious return.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Richmond Hicks, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 10641874
    Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: May 5, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Lane A. Martin, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 10591601
    Abstract: A machine vision system comprises a camera configured to generate one or more images of a field of regard of the camera, a lidar system, and a processor. The lidar system includes a laser configured to emit light, where the emitted light is directed toward a region within the field of regard of the camera and a receiver configured to detect light returned from the emitted light. The processor is configured to receive an indication of a location based on the returned light and determine whether a solid object is present at the location based on the one or more images.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: March 17, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Richmond Hicks, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 10557940
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: February 11, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Jason M. Eichenholz, Austin K. Russell, Scott R. Campbell, Alain Villeneuve, Rodger W. Cleye, Joseph G. LaChapelle, Matthew D. Weed, Lane A. Martin, Stephen D. Gaalema
  • Patent number: 10557939
    Abstract: A lidar system with improved signal-to-noise ratio in the presence of solar background noise. The lidar system can comprise a light source to emit light toward a target. The light source can have an operating wavelength which lies within a band that delineates a relative maximum in atmospheric absorption. The lidar system can also include a detector to detect scattered light from the target and a processor to determine a characteristic of the target based on a characteristic of the scattered light received at the detector.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: February 11, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Jason M. Eichenholz, Matthew D. Weed