Patents by Inventor Matthew J. Banet

Matthew J. Banet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963746
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: April 23, 2024
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Henk Visser, II, Robert Kenneth Hunt, Devin McCombie, Marshal Singh Dhillon, Matthew J. Banet
  • Publication number: 20220248961
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Application
    Filed: August 23, 2021
    Publication date: August 11, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Jim MOON, Henk VISSER, II, Robert Kenneth HUNT, Devin McCOMBIE, Marshal Singh DHILLON, Matthew J. BANET
  • Publication number: 20220031246
    Abstract: The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms/alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Jim MOON, Henk VISSER, II, Robert Kenneth HUNT, Devin McCOMBIE, Marshal Singh DHILLON, Matthew J. BANET
  • Publication number: 20220015704
    Abstract: The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms/alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
    Type: Application
    Filed: October 1, 2021
    Publication date: January 20, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Jim MOON, Henk VISSER, II, Robert Kenneth HUNT, Devin McCOMBIE, Marshal Singh DHILLON, Matthew J. BANET
  • Patent number: 11096596
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: August 24, 2021
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Henk Visser, II, Robert Kenneth Hunt, Devin McCombie, Marshal Singh Dhillon, Matthew J. Banet
  • Publication number: 20200107738
    Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates an interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal: 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations: 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 9, 2020
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Matthew J. Banet, Marshal Singh Dhillon, Andrew Stanley Terry, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming
  • Publication number: 20190328239
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Jim MOON, Henk VISSER, II, Robert Kenneth HUNT, Devin McCOMBIE, Marshal Singh DHILLON, Matthew J. BANET
  • Patent number: 10426367
    Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates an interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: October 1, 2019
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matthew J. Banet, Marshal Singh Dhillon, Andrew Stanley Terry, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming
  • Patent number: 10342438
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 9, 2019
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Henk Visser, II, Robert Kenneth Hunt, Devin McCombie, Marshal Singh Dhillon, Matthew J. Banet
  • Patent number: 10136827
    Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates as interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: November 27, 2018
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matthew J. Banet, Marshal Singh Dhillon, Andrew Stanley Terry, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming
  • Publication number: 20180146862
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Application
    Filed: September 27, 2017
    Publication date: May 31, 2018
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Jim MOON, Henk VISSER, II, Robert Kenneth HUNT, Devin McCOMBIE, Marshal Singh DHILLON, Matthew J. BANET
  • Publication number: 20150032291
    Abstract: A telematics method and system includes, and uses, a telematics device with a controller in communication with a diagnostic system configured to receive diagnostic information from a host vehicle; a position-locating system configured to determine location information of the host vehicle; a wireless transceiver configured to transmit and receive information through a wireless network to and from at least one Internet-accessible website; and, a communication interface including at least a short range wireless interface link. The telematics device may be embodied in an access device, which may include the position-locating system. The access device may be a smartphone, or similar device, that retrieves/transmits diagnostic data/information, and other data/information to/from the vehicle via the short range wireless link.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Inventors: Larkin H. Lowrey, Diego A. Borrego, Alan Wettig, Bruce Davis Lightner, Matthew J. Banet, Paul Washicko, Eric C. Berkobin, Charles M. Link, II
  • Publication number: 20140277906
    Abstract: The invention provides a method for monitoring a vehicle that features the steps of: 1) generating a data packet including vehicle data retrieved from the vehicle using a wireless appliance; 2) transmitting the data packet over an airlink with the wireless appliance so that the data packet passes through a network and to a host computer system; 3) processing the data packet with the host computer system to generate a set of data; and 4) displaying the set of data on a web page hosted on the internet.
    Type: Application
    Filed: March 17, 2013
    Publication date: September 18, 2014
    Inventors: Larkin Hill Lowrey, Matthew J. Banet, Bruce Lightner, Diego Borrego, Chuck Myers
  • Publication number: 20140235964
    Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates as interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.
    Type: Application
    Filed: April 23, 2014
    Publication date: August 21, 2014
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Matthew J. Banet, Marshal Singh Dhillon, Andrew Stanley Terry, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming
  • Publication number: 20140142445
    Abstract: A method and apparatus for measuring a patient's blood pressure featuring the following steps: 1) measuring a time-dependent optical waveform with an optical sensor; 2) measuring a time-dependent electrical signal with an electrical sensor; 3) estimating the patient's arterial properties using the optical waveform; 4) determining a pulse transit time (PTT) from the time-dependent electrical signal and the time-dependent optical waveform; and 5) calculating a blood pressure value using a mathematical model that includes the PTT and the patient's arterial properties.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 22, 2014
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Matthew J. Banet, Marshal Singh Dhillon, Andrew Stanley Terry, Zhou Zhou, Henk Visser, II, Robert J. Kopotic
  • Publication number: 20140081099
    Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates an interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.
    Type: Application
    Filed: May 14, 2013
    Publication date: March 20, 2014
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Matthew J. Banet, Marshal Singh Dhillon, Andrew Stanley Terry, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming
  • Patent number: 8574161
    Abstract: A method and apparatus for measuring a patient's blood pressure featuring the following steps: 1) measuring a time-dependent optical waveform with an optical sensor; 2) measuring a time-dependent electrical signal with an electrical sensor; 3) estimating the patient's arterial properties using the optical waveform; 4) determining a pulse transit time (PTT) from the time-dependent electrical signal and the time-dependent optical waveform; and 5) calculating a blood pressure value using a mathematical model that includes the PTT and the patient's arterial properties.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: November 5, 2013
    Assignee: Sotera Wireless, Inc.
    Inventors: Matthew J. Banet, Zhou Zhou, Marshal Singh Dhillon, Robert J. Kopotic, Andrew Stanley Terry, Henk Visser, II
  • Patent number: 8527135
    Abstract: A telematics method and system includes, and uses, a telematics device with a controller in communication with a diagnostic system configured to receive diagnostic information from a host vehicle; a position-locating system configured to determine location information of the host vehicle; a wireless transceiver configured to transmit and receive information through a wireless network to and from at least one Internet-accessible website; and, a communication interface including at least a short range wireless interface link. The telematics device may be embodied in an access device, which may include the position-locating system. The access device may be a smartphone, or similar device, that retrieves/transmits diagnostic data/information, and other data/information to/from the vehicle via the short range wireless link.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 3, 2013
    Assignee: HTI IP, L.L.C.
    Inventors: Larkin H. Lowrey, Diego A. Borrego, Alan Wettig, Bruce Davis Lightner, Matthew J. Banet, Paul Washicko, Eric C. Berkobin, Charles M. Link, II
  • Patent number: 8506480
    Abstract: A body-worn sensor that measures respiratory rate and other vital signs using an acoustic sensor (e.g., a small-scale sensor). The body-worn sensor features a chest-worn patch sensor that combines both the acoustic sensor and an ECG electrode into a single adhesive patch. To measure blood pressure, the device additionally performs a ‘composite’ PTT-based measurement that features both pressure-dependent and pressure-free measurements. The acoustic sensor measures respiration rate by recording sounds related to the patient's inspiration and expiration. The acoustic sensor is typically placed near the patient's trachea, but can also be placed on the middle right and left side of the chest, and the middle right and left side of the back.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: August 13, 2013
    Assignee: Sotera Wireless, Inc.
    Inventors: Matthew J. Banet, Zhou Zhou, Robert J. Kopotic, Marshal Singh Dhillon, Andrew Stanley Terry, Henk Visser, II
  • Patent number: 8447459
    Abstract: The invention provides a method for monitoring a vehicle that features the steps of: 1) generating a data packet including vehicle data retrieved from the vehicle using a wireless appliance; 2) transmitting the data packet over an airlink with the wireless appliance so that the data packet passes through a network and to a host computer system; 3) processing the data packet with the host computer system to generate a set of data; and 4) displaying the set of data on a web page hosted on the internet.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 21, 2013
    Assignee: HT1 IP, LLC
    Inventors: Larkin Hill Lowrey, Matthew J. Banet, Bruce Lightner, Diego Borrego, Chuck Myers