Patents by Inventor Matthew Lee McDonald

Matthew Lee McDonald has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190344080
    Abstract: An example of a neurostimulation system may include one or more sensing devices and a patient assistance device. The sensing device(s) may be configured to sense one or more signals from a patient and may include one or more non-invasive sensing devices. The patient assistance device may be configured to assist the patient in use of a stimulation device and may include a communication circuit configured to receive the sensed signal(s), a user interface configured to allow for interactions with the patient, and a processing circuit which may be configured to receive patient-specific information including the sensed signal(s), to analyze the patient-specific information with neurostimulation algorithm information representative of available therapeutic options, to produce one or more recommendations related to use of the stimulation device for treating the patient based on the analysis, and to present at least one recommendation using the user interface.
    Type: Application
    Filed: April 24, 2019
    Publication date: November 14, 2019
    Inventors: Matthew Lee McDonald, Bradley Lawrence Hershey, Dennis Zottola, Dat Thanh Huynh, Natalie Bloom Lyons, Juan Gabriel Hincapie Ordonez
  • Publication number: 20190290917
    Abstract: A holder for an implantable medical device (IMD) is disclosed. The holder is configured to hold the IMD in a single, operational orientation when the holder containing the IMD is implanted in a patient. The holder is designed to prevent the IMD from moving within the patient and shifting orientation. The holder may have an opening for receiving a connecting pin, for stimulating electrodes, for example, in a mating orientation with respect to a receptacle contained within the IMB. According to some embodiments, the IMB features a metal housing that can serve as an electrode and the holder is configured with a window to allow a portion of the housing to electrically contact flesh of a patient during operation. Holders for containing a single IMD and holders for containing multiple IMDs are disclosed. Holders for containing multiple IMDs are configured to maintain alignment of the IMDs with respect to each other, for example, a parallel alignment.
    Type: Application
    Filed: June 13, 2019
    Publication date: September 26, 2019
    Inventors: Matthew Lee McDonald, Jillian Doubek, Samuel Tahmasian
  • Patent number: 10335602
    Abstract: A holder for an implantable medical device (IMD) is disclosed. The holder is configured to hold the IMD in a single, operational orientation when the holder containing the IMD is implanted in a patient. The holder is designed to prevent the IMD from moving within the patient and shifting orientation. The holder may have an opening for receiving a connecting pin, for stimulating electrodes, for example, in a mating orientation with respect to a receptacle contained within the IMB. According to some embodiments, the IMB features a metal housing that can serve as an electrode and the holder is configured with a window to allow a portion of the housing to electrically contact flesh of a patient during operation. Holders for containing a single IMD and holders for containing multiple IMDs are disclosed. Holders for containing multiple IMDs are configured to maintain alignment of the IMDs with respect to each other, for example, a parallel alignment.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: July 2, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Jillian Doubek, Samuel Tahmasian
  • Patent number: 10183166
    Abstract: Methods, medical devices, and magnetic resonance imaging (MRI) systems are provided. A patient implanted with a medical device is exposed to a time-varying magnetic field having a signature, thereby inducing mechanical vibrations in at least one component of the medical device. A vibrational characteristic of the mechanical vibrations induced in the component(s) is detected. The vibrational characteristic is analyzed, and the signature of the magnetic field is identified based on the analyzed vibrational characteristic. The medical device is automatically switched from a first operational mode to a second operational mode when the signature is identified.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: January 22, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Kiran K. Gururaj, Ross D. Venook, Matthew Lee McDonald, Joseph M. Bocek
  • Publication number: 20180272134
    Abstract: An implantable pulse generator (IPG) is disclosed herein. The IPG includes two or more body-mounted electrodes that can be independently programmed to provide stimulation at the location of implantation. The IPG also includes connectors for connecting one or more leads configured with electrode arrays for providing stimulation remote from the IPG. The IPG can be implanted at one location in a patient's body where stimulation is to be delivered and the one or more remote leads can be implanted in additional locations. The disclosed IPG with both body-mounted and remote electrodes reduces the charging complexity of having two microstimulators implanted. The remote lead(s) may be either permanently attached to the IPG or may be removeably attached.
    Type: Application
    Filed: March 7, 2018
    Publication date: September 27, 2018
    Inventors: Samuel Tahmasian, Matthew Lee McDonald, William Morgan, Rafael Carbunaru, Jillian Doubek
  • Publication number: 20180272138
    Abstract: An implantable pulse generator (IPG) is disclosed herein. The IPG may be very small compared to most IPGs and may have a volume on the order of about 3 cm3. The IPG has a separate battery compartment and electronics compartment that may be joined together by laser welding, for example. The combined battery compartment/electronics compartment is then enclosed or partially enclosed within a rigid shell made of a polymeric material. The shell provides structural stability and support for the IPG and provides a barrier against puncturing the IPG. The IPG can then be overmolded with a soft coating material such as silicone. The overmolding provides an additional layer of protection against leakage of non-biocompatible components and also enhances the comfort of the IPG. An electrode assembly may be joined to the IPG prior to overmolding, in which case the overmolding secures the electrode assembly to the IPG.
    Type: Application
    Filed: March 7, 2018
    Publication date: September 27, 2018
    Inventors: Samuel Tahmasian, Matthew Lee McDonald, William Morgan, Rafael Carbunaru, Jillian Doubek
  • Publication number: 20180015289
    Abstract: A holder for an implantable medical device (IMD) is disclosed. The holder is configured to hold the IMD in a single, operational orientation when the holder containing the IMD is implanted in a patient. The holder is designed to prevent the IMD from moving within the patient and shifting orientation. The holder may have an opening for receiving a connecting pin, for stimulating electrodes, for example, in a mating orientation with respect to a receptacle contained within the IMB. According to some embodiments, the IMB features a metal housing that can serve as an electrode and the holder is configured with a window to allow a portion of the housing to electrically contact flesh of a patient during operation. Holders for containing a single IMD and holders for containing multiple IMDs are disclosed. Holders for containing multiple IMDs are configured to maintain alignment of the IMDs with respect to each other, for example, a parallel alignment.
    Type: Application
    Filed: June 23, 2017
    Publication date: January 18, 2018
    Inventors: Matthew Lee McDonald, Jillian Doubek, Samuel Tahmasian
  • Patent number: 9833610
    Abstract: A lead assembly includes an implantable lead. Electrodes are disposed along a distal end of the lead in an electrode array. Terminals are disposed along a proximal end of the lead in a proximal-most terminal array and a medial terminal array. A terminal extension electrically couples to the medial terminal array. A port is defined in a connector at a first end of the terminal extension. The port has a first end and an opposing second end and forms a continuous passageway therebetween. The port receives the medial terminal array. A contact array includes connector contacts that are disposed within the port and that couple electrically with a terminal array disposed along a second end of the terminal extension. The contact array couples electrically with terminals of the medial terminal array of the lead when the medial terminal array is received by the port.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: December 5, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Jacob Matthew Muhleman, Rafael Carbunaru
  • Patent number: 9808613
    Abstract: An implantable lead for stimulating patient tissue includes a lead body. A jacket is disposed over at least a portion of a length of the lead body. The jacket has an outer surface and an opposing inner surface. At least a portion of the outer surface of the jacket forms at least a portion of an outer surface of the lead. At least a portion of the inner surface of the jacket is open to the lead body. The jacket defines apertures each extending completely through the jacket. Electrodes are disposed along a distal end of the lead body. Terminals are disposed along a proximal end of the lead body. Conductors electrically couple the electrodes to the terminals. Conductor insulation is disposed over each of the conductors. At least a portion of the conductor insulation is in fluid communication with the local environment external to the lead via the apertures.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: November 7, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Michael X. Govea
  • Patent number: 9775983
    Abstract: A method for manufacturing a lead includes pre-forming at least one relief section along a length of an elongated conductor having a first end and an opposing second end. The conductor with the pre-formed relief section is inserted into a conductor lumen defined along a length of an elongated lead body. The lead body has a first end and an opposing second end. An electrode is disposed at the first end of the lead body. The first end of the conductor is electrically coupled to the electrode. A terminal is disposed at the second end of the lead body. The second end of the conductor is electrically coupled to the terminal.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: October 3, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Andrew DiGiore, John Michael Barker, Anne Margaret Pianca, Michael Adam Moffitt, Matthew Lee McDonald, Joshua Dale Howard
  • Patent number: 9656084
    Abstract: A neurostimulation device and system are provided. At least one neurostimulation lead having a plurality of electrodes is configured for being implanted within tissue of a patient. A shunt capacitance is coupled to one of the electrodes. Time-varying electrical current is delivered to at least one of the electrodes, wherein the shunt capacitance would, without compensation, absorb charge from or inject charge into the tissue in response to time-varying changes in the delivered electrical current, thereby causing an uncompensated electrical waveform to be delivered to the tissue adjacent the one electrode, The absorbed or injected charge is at least partially compensated for, thereby causing a compensated electrical waveform to be delivered to the tissue adjacent the one electrode.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: May 23, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Joseph M. Bocek, Thomas W. Stouffer, Robert Graham Lamont
  • Patent number: 9604066
    Abstract: An implantable lead assembly for an electrical stimulation system includes a first lead configured for insertion into a patient. A current-limiting arrangement is coupleable with the first lead. The current-limiting arrangement is configured for limiting the amount of RF-induced current propagating along a body of the first lead during an MRI procedure. The current-liming arrangement includes a safety device configured to couple to the lead body when the lead body is implanted in the patient. The safety device defines a first port extending along a length of the safety device. The first port is configured for receiving a proximal end portion of the lead body and covering each of multiple terminals disposed along the lead body to prevent the terminals from contacting patient tissue. The safety device provides an impedance of at least 50 ohms at one or more MRI RF frequencies.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: March 28, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rafael Carbunaru, Matthew Lee McDonald
  • Patent number: 9433782
    Abstract: An active implantable medical device (AIMD) for use with a medical lead carrying at least one lead electrode. The AIMD comprises interior electronic circuitry configured for performing a medical function via the medical lead, an electrically conductive case containing the interior electronic circuitry, at least one electrical terminal configured for electrically coupling the electronic circuitry respectively to the lead electrode(s), and an inductive element coupled in series between the electrical terminal(s) and the case. The inductive element is configured for hindering the shunting of electrical current from the at least one electrical terminal to the case that has been induced by electromagnetic interference (EMI) impinging on the medical lead.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: September 6, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joseph M. Bocek, Kiran K. Gururaj, Matthew Lee McDonald, Gaurav Gupta, Mizanur Rahman, Ross D. Venook
  • Patent number: 9415213
    Abstract: An implantable electrical stimulation lead includes a lead body having a distal end, a proximal end, and a longitudinal length; a plurality of electrodes disposed along the distal end of the lead body; a plurality of terminals disposed along the proximal end of the lead body; and a plurality of conductors electrically coupling the plurality of electrodes to the plurality of terminals. To reduce or redistribute current induced in the conductors during an MRI procedure, an internal conductive structure, such as a dummy coil or hollow metal tube, or non-therapeutic electrodes may be provided. Alternatively or additionally, a multi-layer region of the conductors may extend beneath the electrodes or terminals or the electrodes or terminals may vary in size or surface area.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 16, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ross Daniel Venook, Matthew Lee McDonald
  • Publication number: 20160184577
    Abstract: A lead assembly includes an implantable lead. Electrodes are disposed along a distal end of the lead in an electrode array. Terminals are disposed along a proximal end of the lead in a proximal-most terminal array and a medial terminal array. A terminal extension electrically couples to the medial terminal array. A port is defined in a connector at a first end of the terminal extension. The port has a first end and an opposing second end and forms a continuous passageway therebetween. The port receives the medial terminal array. A contact array includes connector contacts that are disposed within the port and that couple electrically with a terminal array disposed along a second end of the terminal extension. The contact array couples electrically with terminals of the medial terminal array of the lead when the medial terminal array is received by the port.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventors: Matthew Lee McDonald, Jacob Matthew Muhleman, Rafael Carbunaru
  • Patent number: 9351655
    Abstract: An implantable lead includes a first lead assembly with a distal tip and a medial end, a medial section with a first end and a second end, and a first intermediate assembly disposed between the first lead assembly and the first end of the medial section. The first lead assembly includes a plurality of external contacts and at least one conductive wire disposed in the first lead assembly. The at least one conductive wire extends from at least one external contact towards the medial end of the first lead assembly. The medial section includes a plurality of conductors extending from the first end to the second end. The first intermediate assembly includes a plurality of conductive elements. At least one of the conductive elements is configured and arranged to electrically couple the at least one conductive wire to at least one of the conductors.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: May 31, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Anne Margaret Pianca, John Michael Barker, Aditya Vasudeo Pandit
  • Patent number: 9308364
    Abstract: A lead assembly includes an implantable lead. Electrodes are disposed along a distal end of the lead in an electrode array. Terminals are disposed along a proximal end of the lead in a proximal-most terminal array and a medial terminal array. A terminal extension electrically couples to the medial terminal array. A port is defined in a connector at a first end of the terminal extension. The port has a first end and an opposing second end and forms a continuous passageway therebetween. The port receives the medial terminal array. A contact array includes connector contacts that are disposed within the port and that couple electrically with a terminal array disposed along a second end of the terminal extension. The contact array couples electrically with terminals of the medial terminal array of the lead when the medial terminal array is received by the port.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: April 12, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Jacob Matthew Muhleman, Rafael Carbunaru
  • Patent number: 9248276
    Abstract: A stimulation lead includes a lead body having a longitudinal surface, a distal end, a proximal end, and a shaft extending along at least a portion of the distal end of the lead body. The stimulation lead also includes multiple segmented electrode members disposed on the shaft along the longitudinal surface of the lead body near the distal end of the lead body. Each segmented electrode member includes a ring structure which forms at least a partial ring and is disposed on the shaft, and a segmented electrode coupled to the ring and having an exposed surface configured and arranged for stimulating tissue when the stimulation lead is implanted.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 2, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Anne Margaret Pianca, Matthew Lee McDonald
  • Patent number: 9205251
    Abstract: An insertion kit for an electrical stimulation system includes a lead with a lead body and a jacket disposed over at least a portion of the lead body. Apertures are defined along an outer surface of the lead body with each of the apertures extending completely through the jacket to an inner surface. The apertures include at least one first aperture. Conductors electrically couple electrodes and terminals disposed along the lead. Conductor insulation is disposed over each of the conductors. At least a portion of the conductor insulation is in fluid communication with the local environment external to the lead via the apertures. A fluid-insertion assembly is configured and arranged for inputting fluid into the lead, via the at least one first aperture, prior to implantation of the lead into the patient.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: December 8, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael Govea, Matthew Lee McDonald, John Michael Barker
  • Patent number: 9190793
    Abstract: An implantable lead includes an elongated member. A plurality of electrodes are disposed on a distal end of the elongated member. A plurality of terminals are disposed on a proximal end of the elongated member. Each of a plurality of conductors electrically couples at least one of the electrodes to at least one of the terminals. The plurality of conductors are disposed in the elongated member in a coiled configuration and have an end portion. Each of a plurality of constraining elements is disposed over at least one of the plurality of conductors such that the underlying at least one of the plurality of conductors is maintained in the coiled configuration. At least one of the plurality of electrodes or terminals is disposed over the constraining element and electrically coupled to at least one of the plurality of conductors.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: November 17, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Matthew Lee McDonald