Patents by Inventor Matthew Lee McDonald

Matthew Lee McDonald has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150306399
    Abstract: A neurostimulation device and system are provided. At least one neurostimulation lead having a plurality of electrodes is configured for being implanted within tissue of a patient. A shunt capacitance is coupled to one of the electrodes. Time-varying electrical current is delivered to at least one of the electrodes, wherein the shunt capacitance would, without compensation, absorb charge from or inject charge into the tissue in response to time-varying changes in the delivered electrical current, thereby causing an uncompensated electrical waveform to be delivered to the tissue adjacent the one electrode, The absorbed or injected charge is at least partially compensated for, thereby causing a compensated electrical waveform to be delivered to the tissue adjacent the one electrode.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 29, 2015
    Inventors: Matthew Lee McDonald, Joseph M. Bocek, Thomas W. Stouffer, Robert Graham Lamont
  • Patent number: 9155883
    Abstract: An implantable electrical stimulation lead includes electrodes and terminals disposed on opposing ends of the lead. A liner extends along a longitudinal length of the lead and has at least two different outer diameters. Conductors are coiled around the liner and electrically-couple the electrodes to the terminals. The conductors include a first conductor and a second conductor. The first conductor includes alternating first and second coiled regions. The first coiled regions have tighter pitches than the second coiled regions. The second conductor includes alternating third and fourth coiled regions. The third coiled regions have tighter pitches than the fourth coiled regions. The conductors are arranged into repeating adjacent winding geometries disposed along the longitudinal length of the lead. The repeating adjacent winding geometries each include one of the first coiled regions and one of the third coiled regions axially disposed adjacent to one another.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: October 13, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ross Daniel Venook, Matthew Lee McDonald
  • Publication number: 20150250999
    Abstract: A method for manufacturing a lead includes pre-forming at least one relief section along a length of an elongated conductor having a first end and an opposing second end. The conductor with the pre-formed relief section is inserted into a conductor lumen defined along a length of an elongated lead body. The lead body has a first end and an opposing second end. An electrode is disposed at the first end of the lead body. The first end of the conductor is electrically coupled to the electrode. A terminal is disposed at the second end of the lead body. The second end of the conductor is electrically coupled to the terminal.
    Type: Application
    Filed: May 26, 2015
    Publication date: September 10, 2015
    Inventors: Andrew DiGiore, John Michael Barker, Anne Margaret Pianca, Michael Adam Moffitt, Matthew Lee McDonald, Joshua Dale Howard
  • Patent number: 9079013
    Abstract: A method for manufacturing a lead includes pre-forming at least one relief section along a length of an elongated conductor having a first end and an opposing second end. The conductor with the pre-formed relief section is inserted into a conductor lumen defined along a length of an elongated lead body. The lead body has a first end and an opposing second end. An electrode is disposed at the first end of the lead body. The first end of the conductor is electrically coupled to the electrode. A terminal is disposed at the second end of the lead body. The second end of the conductor is electrically coupled to the terminal.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 14, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Andrew DiGiore, John Michael Barker, Anne Margaret Pianca, Michael Adam Moffitt, Matthew Lee McDonald, Joshua Dale Howard
  • Publication number: 20150165188
    Abstract: An implantable control module for an electrical stimulation system includes a header coupled a sealed body. The header includes at least one connector assembly. The control module also includes a conductive shield disposed over at least a portion of the connector assembly or connector assemblies of the header. The conductive shield is provided to hinder generation of current in the header or in a portion of a lead received in the header in response to application of an external radiofrequency (RF) or magnetic field. A similar shield can also be used to shield a connector assembly disposed on the end of a lead extension or any other component of the electrical stimulation system.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 18, 2015
    Inventors: Gaurav Gupta, Rafael Carbunaru, Kiran Gururaj, Matthew Lee McDonald, Ross Daniel Venook
  • Patent number: 9052346
    Abstract: A method of estimating response of a medical lead to an electromagnetic field includes providing a medical lead having a proximal end, a distal end, a plurality of electrodes disposed along the distal end, a plurality of terminals disposed along the proximal end, and a plurality of conductors extending along the medical lead and electrically coupling the electrodes to the terminals; individually applying a test field at each of a plurality of test positions along the medical lead using at least one excitation probe; for each application of the test field, determining a response to the application of the test field at one or more of the electrodes or terminals; generating a transfer function using a combination of the responses determined for the applications of the test field; and using the transfer function to estimate a response of the medical lead to an electromagnetic field.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 9, 2015
    Assignee: Boston Scientific Neuromodulation Corporaton
    Inventors: Gaurav Gupta, Joseph M. Bocek, Ross Daniel Venook, Matthew Lee McDonald, Rafael Carbunaru, Chirag M. Patel
  • Patent number: 9008778
    Abstract: An implantable control module for an electrical stimulation system includes a header coupled a sealed body. The header includes at least one connector assembly. The control module also includes a conductive shield disposed over at least a portion of the connector assembly or connector assemblies of the header. The conductive shield is provided to hinder generation of current in the header or in a portion of a lead received in the header in response to application of an external radiofrequency (RF) or magnetic field. A similar shield can also be used to shield a connector assembly disposed on the end of a lead extension or any other component of the electrical stimulation system.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: April 14, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Gaurav Gupta, Rafael Carbunaru, Kiran Gururaj, Matthew Lee McDonald, Ross Daniel Venook
  • Publication number: 20150073519
    Abstract: An implantable electrical stimulation lead includes electrodes and terminals disposed on opposing ends of the lead. A liner extends along a longitudinal length of the lead and has at least two different outer diameters. Conductors are coiled around the liner and electrically-couple the electrodes to the terminals. The conductors include a first conductor and a second conductor. The first conductor includes alternating first and second coiled regions. The first coiled regions have tighter pitches than the second coiled regions. The second conductor includes alternating third and fourth coiled regions. The third coiled regions have tighter pitches than the fourth coiled regions. The conductors are arranged into repeating adjacent winding geometries disposed along the longitudinal length of the lead. The repeating adjacent winding geometries each include one of the first coiled regions and one of the third coiled regions axially disposed adjacent to one another.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 12, 2015
    Inventors: Ross Daniel Venook, Matthew Lee McDonald
  • Publication number: 20150060136
    Abstract: A method for forming a lead or lead extension having an arrangement of elongated conductors disposed in a body of a lead or lead extension includes ablating a plurality of spaced-apart channels in proximity to at least one of the proximal end or the distal end of the body to expose at least part of at least one of the conductors. A C-shaped contact is disposed into each of a different one of the transverse channels. Each C-shaped contact is electrically coupled to at least one of the conductors. Each C-shaped contact is closed so that opposing ends of the C-shaped contact are adjacent to one another and aligned over one of the elongated conductors. The two opposing ends of each C-shaped contact is coupled together such that each C-shaped contact forms a continuous path around the arrangement within the transverse channel in which the C-shaped contact is disposed.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Inventor: Matthew Lee McDonald
  • Patent number: 8954151
    Abstract: A control module for an electrical stimulation system includes a casing having an electrically-conductive portion; an electronic subassembly disposed in the casing; and a header portion coupled to the casing and including a connector for a lead or lead extension. The control module also includes a feedthrough assembly coupling the casing to the header portion. The feedthrough assembly includes a non-conductive ceramic block; conductive feedthrough pins passing through the ceramic block and electrically coupling the connector to the electronic subassembly disposed in the casing; a metal flange disposed around, and attached to, the ceramic block, and a non-conductive spacer attached to the metal flange and to the casing to raise the ceramic block above, and away from, the casing. Other control modules include a ceramic block that has a rim portion that raises the plate portion, through which the feedthrough pins pass, of the block away from the casing.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: February 10, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Thomas Lopez, Matthew Lee McDonald, Gaurav Gupta
  • Publication number: 20140378820
    Abstract: Methods, medical devices, and magnetic resonance imaging (MRI) systems are provided. A patient implanted with a medical device is exposed to a time-varying magnetic field having a signature, thereby inducing mechanical vibrations in at least one component of the medical device. A vibrational characteristic of the mechanical vibrations induced in the component(s) is detected. The vibrational characteristic is analyzed, and the signature of the magnetic field is identified based on the analyzed vibrational characteristic. The medical device is automatically switched from a first operational mode to a second operational mode when the signature is identified.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Inventors: Kiran K. Gururaj, Ross D. Venook, Matthew Lee McDonald, Joseph M. Bocek
  • Patent number: 8910376
    Abstract: A method for forming a lead or lead extension having an arrangement of elongated conductors disposed in a body of a lead or lead extension includes ablating a plurality of spaced-apart channels in proximity to at least one of the proximal end or the distal end of the body to expose at least part of at least one of the conductors. A C-shaped contact is disposed into each of a different one of the transverse channels. Each C-shaped contact is electrically coupled to at least one of the conductors. Each C-shaped contact is closed so that opposing ends of the C-shaped contact are adjacent to one another and aligned over one of the elongated conductors. The two opposing ends of each C-shaped contact is coupled together such that each C-shaped contact forms a continuous path around the arrangement within the transverse channel in which the C-shaped contact is disposed.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: December 16, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Matthew Lee McDonald
  • Patent number: 8909352
    Abstract: An implantable electrical stimulation lead includes a plurality of conductors disposed in a lead body, the plurality of conductors each electrically coupling at least one electrode to at least one terminal. The plurality of conductors includes a first conductor and a second conductor. The first conductor includes a plurality of alternating first and second coiled regions. The first coiled regions have tighter pitches than the second coiled regions. The second conductor includes a plurality of alternating third and fourth coiled regions. The third coiled regions have tighter pitches than the fourth coiled regions. The plurality of conductors are arranged into repeating adjacent winding geometries disposed along a longitudinal length of the lead body. The repeating adjacent winding geometries each include one of the plurality of first coiled regions and one of the plurality of third coiled regions axially disposed adjacent to one another.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: December 9, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ross Daniel Venook, Matthew Lee McDonald
  • Patent number: 8880187
    Abstract: An implantable stimulation lead includes a lead body having a proximal end and a distal end; a plurality of electrodes disposed along the distal end of the lead body; a plurality of terminals disposed along the proximal end of the lead body, and a plurality of conductors disposed in the lead body and including a first conductor and a second conductor. Each conductor electrically couples at least one of the electrodes to at least one of the terminals. The first conductor has a RF impedance that is at least 25% greater in magnitude than the second conductor.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 4, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Gaurav Gupta, Jacob Matthew Muhleman, Ross Daniel Venook
  • Patent number: 8868207
    Abstract: An implantable electrical stimulation lead includes a plurality of conductors that extend along a lead body and that electrically couple electrodes to terminals. A first tissue coupler is electrically coupled to a first conductor of the plurality of conductors. The first tissue coupler includes a conductive first inner member, a non-conductive member disposed adjacent to at least a portion of the first inner member, and a conductive outer member disposed adjacent to at least a portion of the non-conductive member such that at least a portion of the non-conductive member is sandwiched between the first inner member and the outer member. The first inner member is electrically coupled to the first conductor. The outer member is disposed along a portion of an outer surface of the lead body such that the conductive outer member is exposed to patient tissue when the lead is implanted in a patient.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: October 21, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Ross Daniel Venook
  • Patent number: 8857048
    Abstract: A method for forming a lead or lead extension includes forming an arrangement of elongated conductors. Each of the conductors extends from a proximal end of the arrangement to a distal end of the arrangement. Each of the conductors includes a layer of insulation disposed over a conductive core. A conductor-separating element is disposed over either the proximal end or the distal end of the arrangement. The conductor-separating element includes a plurality of ablation windows defined in a body. An end of at least one of the elongated conductors is radially extended over a portion of the conductor-separating element such that a portion of the at least one elongated conductor extends across at least one of the ablation windows. Insulation from the portion of the at least one conductor extending across the ablation window is ablated to expose a portion of the conductive core of the elongated conductor.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: October 14, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Matthew Lee McDonald
  • Publication number: 20140277314
    Abstract: An insertion kit for an electrical stimulation system includes a lead with a lead body and a jacket disposed over at least a portion of the lead body. Apertures are defined along an outer surface of the lead body with each of the apertures extending completely through the jacket to an inner surface. The apertures include at least one first aperture. Conductors electrically couple electrodes and terminals disposed along the lead. Conductor insulation is disposed over each of the conductors. At least a portion of the conductor insulation is in fluid communication with the local environment external to the lead via the apertures. A fluid-insertion assembly is configured and arranged for inputting fluid into the lead, via the at least one first aperture, prior to implantation of the lead into the patient.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 18, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael Govea, Matthew Lee McDonald, John Michael Barker
  • Patent number: 8818526
    Abstract: An implantable lead includes a lead body and at least one safety element. The lead body has a distal end and a proximal end. The lead body defines at least one lumen extending along at least a portion of the lead body. The lead body includes a plurality of electrodes disposed on the distal end of the lead body, a plurality of terminals disposed on the proximal end of the lead body, and a plurality of conductors disposed in the lead body, each conductor electrically coupling at least one of the electrodes to at least one of the terminals. The at least one safety element is disposed along at least a portion of the lead body and is configured and arranged to reduce damage to patient tissue adjacent to the plurality of electrodes due to heating, induced electrical signals, or both when the lead is exposed to radio frequency irradiation.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 26, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Ross Daniel Venook
  • Patent number: 8774939
    Abstract: An implantable lead has an inner core, a plurality of coiled conductor guides, and a plurality of conductors. The inner core defines a plurality of lumens. Each coiled conductor guide defines a plurality of helical lumens. Each coiled conductor guide is disposed in a coiled arrangement over a portion of the inner core. Each of the conductors electrically couples at least one electrode to at least one terminal. At least one of the conductors includes a plurality of units. Each unit includes a first conductor segment extending along the inner core from a beginning point to a first position, a coiled conductor segment disposed at least partially in one of the lumens of the coiled conductor guides and extending from the first position to the second position, and a second conductor segment extending along the inner core from the second position to an endpoint.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: July 8, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Matthew Lee McDonald
  • Publication number: 20140180375
    Abstract: A stimulation lead includes a lead body having a longitudinal surface, a distal end, a proximal end, and a shaft extending along at least a portion of the distal end of the lead body. The stimulation lead also includes multiple segmented electrode members disposed on the shaft along the longitudinal surface of the lead body near the distal end of the lead body. Each segmented electrode member includes a ring structure which forms at least a partial ring and is disposed on the shaft, and a segmented electrode coupled to the ring and having an exposed surface configured and arranged for stimulating tissue when the stimulation lead is implanted.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: Boston Scientific Neruomodulation Corporation
    Inventors: Anne Margaret Pianca, Matthew Lee McDonald