Patents by Inventor Mauro MELLI

Mauro MELLI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12248166
    Abstract: A display system comprises a waveguide having light incoupling or light outcoupling optical elements formed of a metasurface. The metasurface is a multilevel (e.g., bi-level) structure having a first level defined by spaced apart protrusions formed of a first optically transmissive material and a second optically transmissive material between the protrusions. The metasurface also includes a second level formed by the second optically transmissive material. The protrusions on the first level may be patterned by nanoimprinting the first optically transmissive material, and the second optically transmissive material may be deposited over and between the patterned protrusions. The widths of the protrusions and the spacing between the protrusions may be selected to diffract light, and a pitch of the protrusions may be 10-600 nm.
    Type: Grant
    Filed: September 11, 2023
    Date of Patent: March 11, 2025
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20240418915
    Abstract: The present disclosure generally relates to display systems, and more particularly to augmented reality display systems and methods of fabricating the same. A method of fabricating a display device includes providing a substrate comprising a lithium (Li)-based oxide and forming an etch mask pattern exposing regions of the substrate. The method additionally includes plasma etching the exposed regions of the substrate using a gas mixture comprising CHF3 to form a diffractive optical element, wherein the diffractive optical element comprises Li-based oxide features configured to diffract visible light incident thereon.
    Type: Application
    Filed: August 28, 2024
    Publication date: December 19, 2024
    Inventors: Mauro Melli, Christophe Peroz, Melanie Maputol West
  • Patent number: 12130439
    Abstract: In some embodiments, a display device includes one or more waveguides having a vapor deposited light absorbing film on edges of the waveguide to mitigate ghost images. In some embodiments, the film is formed directly on the edge of the waveguide by a vapor deposition, such as an evaporative deposition process. In some embodiments, the light absorbing films may comprise carbon, for example carbon in the form of one or more allotropes of carbon, such as fullerenes, or black silicon.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: October 29, 2024
    Assignee: Magic Leap, Inc.
    Inventor: Mauro Melli
  • Patent number: 12117630
    Abstract: The present disclosure generally relates to display systems, and more particularly to augmented reality display systems and methods of fabricating the same. A method of fabricating a display device includes providing a substrate comprising a lithium (Li)-based oxide and forming an etch mask pattern exposing regions of the substrate. The method additionally includes plasma etching the exposed regions of the substrate using a gas mixture comprising CHF3 to form a diffractive optical element, wherein the diffractive optical element comprises Li-based oxide features configured to diffract visible light incident thereon.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: October 15, 2024
    Assignee: MAGIC LEAP, INC.
    Inventors: Mauro Melli, Christophe Peroz, Melanie Maputol West
  • Publication number: 20240273839
    Abstract: The present disclosure relates to display systems and, more particularly, to augmented reality display systems. In one aspect, a method of fabricating an optical element includes providing a substrate having a first refractive index and transparent in the visible spectrum. The method additionally includes forming on the substrate periodically repeating polymer structures. The method further includes exposing the substrate to a metal precursor followed by an oxidizing precursor. Exposing the substrate is performed under a pressure and at a temperature such that an inorganic material comprising the metal of the metal precursor is incorporated into the periodically repeating polymer structures, thereby forming a pattern of periodically repeating optical structures configured to diffract visible light. The optical structures have a second refractive index greater than the first refractive index.
    Type: Application
    Filed: March 26, 2024
    Publication date: August 15, 2024
    Inventors: Melanie Maputol WEST, Christophe Peroz, Mauro Melli
  • Publication number: 20240192481
    Abstract: Eyepieces and methods of fabricating the eyepieces are disclosed. In some embodiments, the eyepiece comprises a curved cover layer and a waveguide layer for propagating light. In some embodiments, the curved cover layer comprises an antireflective feature.
    Type: Application
    Filed: April 15, 2022
    Publication date: June 13, 2024
    Inventors: Ryan Jason ONG, Ling LI, Chieh CHANG, Sharad D. BHAGAT, Christophe PEROZ, Victor Kai LIU, Samarth BHARAGAVA, Mauro MELLI, Melanie Maputol WEST
  • Publication number: 20240173930
    Abstract: Methods are disclosed for fabricating molds for forming eyepieces having waveguides with integrated spacers. The molds are formed by etching deep holes (e.g., 5 ?m to 1000 ?m deep) into a substrate using a wet etch or dry etch. The etch masks for defining the holes may be formed with a thick metal layer and/or multiple layers of different metals. A resist layer may be disposed over the etch mask. The resist layer may be patterned to form a pattern of holes, the pattern may be transferred to the etch mask, and the etch mask may be used to transfer the pattern into the underlying substrate. The patterned substrate may be utilized as a mold onto which a flowable polymer may be introduced and allowed to harden. Hardened polymer in the holes may form integrated spacers. The hardened polymer may be removed from the mold to form a waveguide with integrated spacers.
    Type: Application
    Filed: November 10, 2023
    Publication date: May 30, 2024
    Inventors: Mauro MELLI, Chieh Chang, Ling Li, Melanie Maputol WEST, Christophe Peroz, Ali KARBASI, Sharad D. Bhagat, Brian George HILL
  • Patent number: 11954809
    Abstract: The present disclosure relates to display systems and, more particularly, to augmented reality display systems. In one aspect, a method of fabricating an optical element includes providing a substrate having a first refractive index and transparent in the visible spectrum. The method additionally includes forming on the substrate periodically repeating polymer structures. The method further includes exposing the substrate to a metal precursor followed by an oxidizing precursor. Exposing the substrate is performed under a pressure and at a temperature such that an inorganic material comprising the metal of the metal precursor is incorporated into the periodically repeating polymer structures, thereby forming a pattern of periodically repeating optical structures configured to diffract visible light. The optical structures have a second refractive index greater than the first refractive index.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Melanie Maputol West, Christophe Peroz, Mauro Melli
  • Publication number: 20240036321
    Abstract: In some embodiments, a near-eye, near-eye display system comprises a stack of waveguides having pillars in a central, active portion of the waveguides. The active portion may include light outcoupling optical elements configured to outcouple image light from the waveguides towards the eye of a viewer. The pillars extend between and separate neighboring ones of the waveguides. The light outcoupling optical elements may include diffractive optical elements that are formed simultaneously with the pillars, for example, by imprinting or casting. The pillars are disposed on one or more major surfaces of each of the waveguides. The pillars may define a distance between two adjacent waveguides of the stack of waveguides. The pillars may be bonded to adjacent waveguides may be using one or more of the systems, methods, or devices herein. The bonding provides a high level of thermal stability to the waveguide stack, to resist deformation as temperatures change.
    Type: Application
    Filed: December 21, 2021
    Publication date: February 1, 2024
    Inventors: Ling Li, Christophe Peroz, Chieh Chang, Sharad D. Bhagat, Ryan Jason Ong, Ali Karbasi, Stephen Richard Rugg, Mauro Melli, Kevin Messer, Brian George Hill, Melanie Maputol West
  • Publication number: 20230417980
    Abstract: A display system comprises a waveguide having light incoupling or light outcoupling optical elements formed of a metasurface. The metasurface is a multilevel (e.g., bi-level) structure having a first level defined by spaced apart protrusions formed of a first optically transmissive material and a second optically transmissive material between the protrusions. The metasurface also includes a second level formed by the second optically transmissive material. The protrusions on the first level may be patterned by nanoimprinting the first optically transmissive material, and the second optically transmissive material may be deposited over and between the patterned protrusions. The widths of the protrusions and the spacing between the protrusions may be selected to diffract light, and a pitch of the protrusions may be 10-600 nm.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20230418074
    Abstract: An optical system comprises an optically transmissive substrate comprising a multilevel metasurface which comprises a grating comprising a plurality of multilevel unit cells. Each unit cell comprises, on a lowermost level, a laterally-elongated first lowermost level nanobeam having a first width and a laterally-elongated second lowermost level nanobeam having a second width larger than the first width. Each unit cell further comprises, on an uppermost level, a laterally-elongated first uppermost level nanobeam above the first lowermost level nanobeam and a laterally-elongated second uppermost level nanobeam above the second lowermost level nanobeam.
    Type: Application
    Filed: September 8, 2023
    Publication date: December 28, 2023
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Patent number: 11840034
    Abstract: Methods are disclosed for fabricating molds for forming eyepieces having waveguides with integrated spacers. The molds are formed by etching deep holes (e.g., 5 ?m to 1000 ?m deep) into a substrate using a wet etch or dry etch. The etch masks for defining the holes may be formed with a thick metal layer and/or multiple layers of different metals. A resist layer may be disposed over the etch mask. The resist layer may be patterned to form a pattern of holes, the pattern may be transferred to the etch mask, and the etch mask may be used to transfer the pattern into the underlying substrate. The patterned substrate may be utilized as a mold onto which a flowable polymer may be introduced and allowed to harden. Hardened polymer in the holes may form integrated spacers. The hardened polymer may be removed from the mold to form a waveguide with integrated spacers.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: December 12, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Mauro Melli, Chieh Chang, Ling Li, Melanie Maputol West, Christophe Peroz, Ali Karbasi, Sharad D. Bhagat, Brian George Hill
  • Patent number: 11796818
    Abstract: An optical system comprises an optically transmissive substrate comprising a metasurface which comprises a grating comprising a plurality of unit cells. Each unit cell comprises a laterally-elongated first nanobeam having a first width; and a laterally-elongated second nanobeam spaced apart from the first nanobeam by a gap, the second nanobeam having a second width larger than the first width. A pitch of the unit cells is 10 nm to 1 ?m. The heights of the first and the second nanobeams are: 10 nm to 450 nm where a refractive index of the substrate is more than 3.3; and 10 nm to 1 ?m where the refractive index is 3.3 or less.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: October 24, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Patent number: 11789198
    Abstract: A display system comprises a waveguide having light incoupling or light outcoupling optical elements formed of a metasurface. The metasurface is a multilevel (e.g., bi-level) structure having a first level defined by spaced apart protrusions formed of a first optically transmissive material and a second optically transmissive material between the protrusions. The metasurface also includes a second level formed by the second optically transmissive material. The protrusions on the first level may be patterned by nanoimprinting the first optically transmissive material, and the second optically transmissive material may be deposited over and between the patterned protrusions. The widths of the protrusions and the spacing between the protrusions may be selected to diffract light, and a pitch of the protrusions may be 10-600 nm.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: October 17, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20230296945
    Abstract: An optical device includes a liquid crystal layer having a first plurality of liquid crystal molecules arranged in a first pattern and a second plurality of liquid crystal molecules arranged in a second pattern. The first and the second pattern are separated from each other by a distance of about 20 nm to about 100 nm along a longitudinal or a transverse axis of the liquid crystal layer. The first and the second plurality of liquid crystal molecules are configured as first and second grating structures that can redirect light of visible or infrared wavelengths.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 21, 2023
    Inventors: Chulwoo OH, Mauro MELLI, Christophe PEROZ, Vikramjit SINGH, Frank Y. XU, Michael Anthony KLUG
  • Publication number: 20230273450
    Abstract: Antireflection coatings for metasurfaces are described herein. In some embodiments, the metasurface may include a substrate, a plurality of nanostructures thereon, and an antireflection coating disposed over the nanostructures. The antireflection coating may be a transparent polymer, for example a photoresist layer, and may have a refractive index lower than the refractive index of the nanostructures and higher than the refractive index of the overlying medium (e.g., air). Advantageously, the antireflection coatings may reduce or eliminate ghost images in an augmented reality display in which the metasurface is incorporated.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 31, 2023
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Melli, Christophe Peroz, Evgeni Poliakov
  • Patent number: 11693282
    Abstract: An optical device includes a liquid crystal layer having a first plurality of liquid crystal molecules arranged in a first pattern and a second plurality of liquid crystal molecules arranged in a second pattern. The first and the second pattern are separated from each other by a distance of about 20 nm and about 100 nm along a longitudinal or a transverse axis of the liquid crystal layer. The first and the second plurality of liquid crystal molecules are configured as first and second grating structures that can redirect light of visible or infrared wavelengths.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: July 4, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Chulwoo Oh, Mauro Melli, Christophe Peroz, Vikramjit Singh, Frank Xu, Michael Anthony Klug
  • Publication number: 20230168425
    Abstract: Display devices include waveguides with metasurfaces as in-coupling and/or out-coupling optical elements. The metasurfaces may be formed on a surface of the waveguide and may include a plurality or an array of sub-wavelength-scale (e.g., nanometer-scale) protrusions. Individual protrusions may include horizontal and/or vertical layers of different materials which may have different refractive indices, allowing for enhanced manipulation of light redirecting properties of the metasurface. Some configurations and combinations of materials may advantageously allow for broadband metasurfaces. Manufacturing methods described herein provide for vertical and/or horizontal layers of different materials in a desired configuration or profile.
    Type: Application
    Filed: January 15, 2023
    Publication date: June 1, 2023
    Inventors: Mauro Melli, Mohammadreza Khorasaninejad, Christophe Peroz, Pierre St. Hilaire, Dianmin Lin
  • Patent number: 11664194
    Abstract: A Procedural EBL system implements a user-provided oracle function (e.g., associated with a specific pattern) to generate control instructions for electron beam drive electronics in an on-demand basis. A control system may invoke the oracle function to query the pattern at individual point locations (e.g., individual x,y locations), and/or it may query the pattern over an area corresponding to a current field being addressed by the beam and stage positioner, for example. This Procedural EBL configuration manages control and pattern generation so that the low-level drive electronics and beam column may remain unchanged, allowing it to leverage existing EBL technologies.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: May 30, 2023
    Assignee: MAGIC LEAP, INC.
    Inventors: Victor Kai Liu, Mauro Melli
  • Patent number: 11609365
    Abstract: A method of fabricating non-uniform gratings includes implanting different densities of ions into corresponding areas of a substrate, patterning, e.g., by lithography, a resist layer on the substrate, etching the substrate with the patterned resist layer, and then removing the resist layer from the substrate, leaving the substrate with at least one grating having non-uniform characteristics associated with the different densities of ions implanted in the areas. The method can further include using the substrate having the grating as a mold to fabricate a corresponding grating having corresponding non-uniform characteristics, e.g., by nanoimprint lithography.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: March 21, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Mauro Melli, Christophe Peroz