Patents by Inventor Mead Misic

Mead Misic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11005058
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 11, 2021
    Assignee: SAMSUNG RESEARCH AMERICA, INC.
    Inventors: Zhaoqun Zhou, Peter T. Kazlas, Mead Misic, Zoran Popovic, John Spencer Morris
  • Publication number: 20190312222
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 10, 2019
    Inventors: ZHAOQUN ZHOU, PETER T. KAZLAS, MEAD MISIC, ZORAN POPOVIC, JOHN SPENCER MORRIS
  • Patent number: 10333090
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 25, 2019
    Assignee: SAMSUNG RESEARCH AMERICA, INC.
    Inventors: Zhaoqun Zhou, Peter T. Kazlas, Mead Misic, Zoran Popovic, John Spencer Morris
  • Publication number: 20180013088
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 11, 2018
    Inventors: ZHAOQUN ZHOU, PETER T. KAZLAS, MEAD MISIC, ZORAN POPOVIC, JOHN SPENCER MORRIS
  • Patent number: 9793505
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Grant
    Filed: October 2, 2010
    Date of Patent: October 17, 2017
    Assignee: QD VISION, INC.
    Inventors: Zhaoqun Zhou, Peter T. Kazlas, Mead Misic, Zoran Popovic, John Spencer Morris
  • Publication number: 20110140075
    Abstract: A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/?, wherein ? represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
    Type: Application
    Filed: October 2, 2010
    Publication date: June 16, 2011
    Inventors: Zhaoqun ZHOU, Peter T. Kazlas, Mead Misic, Zoran Popovic, John Spencer Morris
  • Publication number: 20100051901
    Abstract: Light emitting devices and devices with improved performance are disclosed. In one embodiment, a light emitting device includes an emissive material disposed between a first electrode, and a second electrode, wherein the emissive material comprises semiconductor nanocrystals capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation, wherein the light emitting device can have a peak external quantum efficiency of at least about 1.0 percent. Also disclosed is a display including at least one light emitting device including an emissive material disposed between a first electrode, and a second electrode, wherein the at least one light emitting device can have a peak external quantum efficiency of at least about 1.0 percent. In another embodiment, a light emitting device includes an emissive material disposed between a first electrode and a second electrode.
    Type: Application
    Filed: May 21, 2009
    Publication date: March 4, 2010
    Inventors: Peter T. Kazlas, Marshall Cox, Seth Coe-Sullivan, Dorai Ramprasad, Jonathan S. Steckel, Craig Breen, Caroline J. Roush, Mead Misic