Patents by Inventor Megan M. Petersen

Megan M. Petersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200215790
    Abstract: A fiber placement system including a compaction roller rotatable about an axis of rotation, the compaction roller including a reflective layer that includes a reflective material dispersed in a polymeric material, and a light source positioned to project a beam of electromagnetic radiation proximate the compaction roller, the beam having a wavelength, wherein the reflective material has a reflectance of at least 80 percent at the wavelength.
    Type: Application
    Filed: March 16, 2020
    Publication date: July 9, 2020
    Applicant: The Boeing Company
    Inventors: Stephen G. Moore, Alexandra K. Dillon, Alan G. Burg, Megan M. Petersen
  • Patent number: 10632717
    Abstract: A fiber placement system including a compaction roller rotatable about an axis of rotation, the compaction roller including a reflective layer that includes a reflective material dispersed in a polymeric material, and a light source positioned to project a beam of electromagnetic radiation proximate the compaction roller, the beam having a wavelength, wherein the reflective material has a reflectance of at least 80 percent at the wavelength.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: April 28, 2020
    Assignee: The Boeing Company
    Inventors: Stephen G. Moore, Alexandra K. Dillon, Alan G. Burg, Megan M. Petersen
  • Publication number: 20180290402
    Abstract: A fiber placement system including a fiber placement station at a first location, the fiber placement station including a tool and a fiber placement assembly configured to construct a reinforcement layup on the tool, the first fiber placement assembly including a compaction roller rotatable about an axis of rotation, the compaction roller at least partially defining a nip, a thermoplastic composite ply extending through the nip and a heating unit positioned to heat the thermoplastic composite ply proximate the nip, and a consolidation station at a consolidation location, the consolidation location being different from the first location, the consolidation station including a consolidation tool and a consolidation system configured to consolidate a reinforcement layup assembly that includes the reinforcement layup.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 11, 2018
    Applicant: The Boeing Company
    Inventors: Marc R. Matsen, Mark A. Negley, Jeffery L. Marcoe, Stephen G. Moore, Brice A. Johnson, Alexandra K. Dillon, Megan M. Petersen
  • Patent number: 10016947
    Abstract: A fiber placement system including a fiber placement station at a first location, the fiber placement station including a tool and a fiber placement assembly configured to construct a reinforcement layup on the tool, the first fiber placement assembly including a compaction roller rotatable about an axis of rotation, the compaction roller at least partially defining a nip, a thermoplastic composite ply extending through the nip and a heating unit positioned to heat the thermoplastic composite ply proximate the nip, and a consolidation station at a consolidation location, the consolidation location being different from the first location, the consolidation station including a consolidation tool and a consolidation system configured to consolidate a reinforcement layup assembly that includes the reinforcement layup.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: July 10, 2018
    Assignee: The Boeing Company
    Inventors: Marc R. Matsen, Mark A. Negley, Jeffery L. Marcoe, Stephen G. Moore, Brice A. Johnson, Alexandra K. Dillon, Megan M. Petersen
  • Publication number: 20160339647
    Abstract: A fiber placement system including a fiber placement station at a first location, the fiber placement station including a tool and a fiber placement assembly configured to construct a reinforcement layup on the tool, the first fiber placement assembly including a compaction roller rotatable about an axis of rotation, the compaction roller at least partially defining a nip, a thermoplastic composite ply extending through the nip and a heating unit positioned to heat the thermoplastic composite ply proximate the nip, and a consolidation station at a consolidation location, the consolidation location being different from the first location, the consolidation station including a consolidation tool and a consolidation system configured to consolidate a reinforcement layup assembly that includes the reinforcement layup.
    Type: Application
    Filed: May 21, 2015
    Publication date: November 24, 2016
    Inventors: Marc R. Matsen, Mark A. Negley, Jeffery L. Marcoe, Stephen G. Moore, Brice A. Johnson, Alexandra K. Dillon, Megan M. Petersen
  • Publication number: 20160332434
    Abstract: A fiber placement system including a compaction roller rotatable about an axis of rotation, the compaction roller including a reflective layer that includes a reflective material dispersed in a polymeric material, and a light source positioned to project a beam of electromagnetic radiation proximate the compaction roller, the beam having a wavelength, wherein the reflective material has a reflectance of at least 80 percent at the wavelength.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 17, 2016
    Inventors: Stephen G. Moore, Alexandra K. Dillon, Alan G. Burg, Megan M. Petersen
  • Publication number: 20040179971
    Abstract: The present invention is directed to a retention mechanism for retaining a stopper on a test tube during pressure differentials, as well as a securing element for use therein. The retention mechanism includes a securing element for inhibiting strain between the stopper and the test tube. The present invention is also directed to a method of retaining a stopper on a test tube during pressure differentials. The method includes providing at least one adjustable retaining element and maintaining a force between a first portion and a second portion to maintain the stopper in fixed relation to the top end of the test tube.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 16, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Margie M. Ferguson, Megan M. Petersen, Jeffrey Silvestri